
dcos-perf-test-driver Documentation
Release 0.1.0

Ioannis Charalampidis

Aug 10, 2018

Contents:

1 Installation 3

2 Concepts 5
2.1 Summarization . 6
2.2 The Black Box Abstraction . 6

3 Architecture 9
3.1 Instantiating Components . 10
3.2 Event Cascading . 10
3.3 Processing the metrics . 11

4 Example 13
4.1 The testing scenario . 13
4.2 Configuring our black box . 14
4.3 Defining the axis evolution . 16
4.4 Ensuring state integrity . 19
4.5 Reporting the results . 19
4.6 Indicators . 21
4.7 Increasing our statistics . 22
4.8 Parameterizing your configuration . 22
4.9 Running the tests . 23

5 Usage 25
5.1 –define . 25
5.2 –meta . 26
5.3 –results . 26
5.4 –verbose . 26

6 Cookbook 27
6.1 General Section Recipes . 27
6.2 Channel Recipes . 29
6.3 Observer Recipes . 32
6.4 Tracker Recipes . 32
6.5 Policy Recipes . 32
6.6 Tasks Recipes . 32
6.7 Advanced Recipes . 32

i

7 Configuration 37
7.1 Global Configuration Statements . 37
7.2 Per-Class Configuration Statements . 40
7.3 Separating Configuration Files . 43
7.4 Macros . 44
7.5 Configuration Example . 46

8 Class Reference 51
8.1 Policies . 51
8.2 Channels . 56
8.3 Observers . 61
8.4 Trackers . 68
8.5 Tasks . 71
8.6 Reporters . 75
8.7 Indicators . 87
8.8 Summarizers . 88
8.9 Event Reference . 89
8.10 Event Filters . 97

9 Indices and tables 99

ii

dcos-perf-test-driver Documentation, Release 0.1.0

The DC/OS Performance Test Driver is a test harness for running scale and performance tests of any component in
DC/OS. Because of it’s modular design it’s simple to configure it to match your needs.

Contents: 1

dcos-perf-test-driver Documentation, Release 0.1.0

2 Contents:

CHAPTER 1

Installation

The dcos-perf-test-driver can be installed as a standard python module using pip. However since the
project is not publicly available in PyPI so you will need to point it to the github repository:

pip install git+https://github.com/mesosphere/dcos-perf-test-driver

If the installation was successful, the dcos-perf-test-driver binary should be now available.

Continue to Usage for more information regarding the command-line interface or to the Example to get more familiar
with the tool.

3

dcos-perf-test-driver Documentation, Release 0.1.0

4 Chapter 1. Installation

CHAPTER 2

Concepts

Before you start implementing your own performance test you must first ensure that it’s structured in the correct way.
To start with, keep in mind the following:

1. The tests do not operate on the time-domain but on a user-defined axis(-es)

2. Metrics are collected for every value on the axis

Effectively this means that the performance driver explores a parameter space, on which every point is a test case. To
keep things simple you can think that the perf driver is evaluating this function for every axis and metric:

𝑓𝑚𝑒𝑡𝑟𝑖𝑐(𝑎𝑥𝑖𝑠) = 𝑣𝑎𝑙𝑢𝑒

Note: In the perf-driver semantics, each axis is called a parameter. That’s because the values we are exploring are
also the test parameters.

Note: But why are you not using the time domain?

If you come from the data analytics world, using a user-defined axis might come as a surprise. However if you consider
that the dcos-perf-test-driver is designed to accurately and reproducibly measure an observation given a test
scenario, you will notice that the time series is an unwanted noise.

For example, if you want to only measure how much time it takes to deploy 1000 applications on marathon you don’t
really care how much did the individual deployment takes. And if you want to measure the same thing for 100, 200,
or 2000 applications, collecting and summarizing the data from a time-series database is more trouble than help.

Therefore by requiring the user to define his own axis, the system can abstract the user input as individual test scenarios,
allowing it to easily group the results in the respective bins, even if the tests are running in parallel.

5

dcos-perf-test-driver Documentation, Release 0.1.0

2.1 Summarization

You will also encounter cases where you have collected more than one value for the same axis value and metric. This
can either happen because you are sampling multiple times during the test case, or because you have configured the
tests to run multiple times for more accurate statistics.

In either way, you will end-up with multiple values for the same function:

𝑓𝑚𝑒𝑡𝑟𝑖𝑐1(𝑎𝑥𝑖𝑠1) =
{︀
𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2, 𝑣𝑎𝑙𝑢𝑒3...

}︀
But this violates our initial assumption that the driver collects a single value for every axis/metric combination.

You can collapse these values down to one using a Summarizer. As it’s name indicates it is going perform an operation
to the values and reduce them to a single scalar.

For example, if you are interested on the worst value of the series, you can use the max summarizer. This effectively
evaluates to: ∑︁

𝑚𝑎𝑥

𝑓𝑚𝑒𝑡𝑟𝑖𝑐1(𝑎𝑥𝑖𝑠1) = 𝑚𝑎𝑥(
{︀
𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2, 𝑣𝑎𝑙𝑢𝑒3...

}︀
)

But usually you are interested on the mean value, so you are going to use the mean summarizer, or even the
mean_err summarizer that will also include the uncertainty values for creating error bars.

Note: The summarizer will automatically reject outliers that are not part of a Gaussian distribution. You can disable
this behavior by setting outliers: no on the config.metrics configuration.

The actual implementation of the function 𝑓 is not relevant in the conceptual level and therefore is abstracted with the
Black Box Abstraction as described in the next section

2.2 The Black Box Abstraction

One of the most important terms in the test driver is the Black Box Abstraction. This is more like a mental abstraction
that helps you design your test in a compatible way, rather than a literal call-out to an unknown tool.

According to this, your test case is always considered a black box with a standardized input and output. A few
important things must be noted:

1. Changing something in the input starts a new test, for which some measurements are performed and an output
is produced.

2. If the same input is given to the black box, the same output is expected.

3. A black box can take an arbitrary time to complete. In the same time other black boxes could run in parallel.

The input and the output to the black box is always a dictionary of scalar values:

It’s important to note that even though the Black Box Abstraction provides a clean mental separation, it’s implementa-
tion is not that trivial. The next section describes how this is implemented in the driver.

6 Chapter 2. Concepts

dcos-perf-test-driver Documentation, Release 0.1.0

2.2.1 Implementation

The Black Box Abstraction is internally implemented as a set of different components. As described in the Architecture,
these components have no dependencies and are statically configured, therefore it’s important to understand what’s
their functionality in order to be properly configured.

The components taking part in the Black Box Abstraction are the following:

1. Every time a value is changed the Channel associated with this value is triggered. It’s purpose is to apply this
change to the application being tested. Values can be applied:

• By HTTP requests (ex. every time a parameter changes, make an HTTP request)

• By Calling-out to a command-line tool

• By re-launching the application being tested with new command-line arguments

2. At the same time an Observer starts collecting useful events from the application. Such events could be:

• Events dispatched by the application over an event bus (ex. WebSocket)

• Events synthesized via polling (ex. life cycle events of an HTTP request, such as Started, Request
Sent, First Bytes Arrived and Completed)

• Events synthesized via log crawling

• Events that carry updates on application-exposed metrics (ex. by polling a /metrics endpoint and
publishing an event every time a metric changes it’s value)

3. A Tracker listens for all relevant events in the bus and calculates the metrics. For example:

• Number of events observed

• Duration between events

• Extract values carried by the events (ex. timestamp)

4. A Summarizer collects all the metrics produced by the Tracker and calculates a single, “summarized” value. A
summarizer could calculate:

• The minimum value

• The maximum value

• The average of the values

• The average of the values, including uncertainty values (error bars)

2.2. The Black Box Abstraction 7

dcos-perf-test-driver Documentation, Release 0.1.0

You can refer to the Example to see how you can configure these components and see them in action.

8 Chapter 2. Concepts

CHAPTER 3

Architecture

The DC/OS Performance Test Driver is design to be modular and extensible in order to adapt to the needs of every
interested party.

It is composed of a set of individual components that all plug on a shared event bus and communicate to each other
purely through messages.

According to their main function they are separated in the following types:

• A Policy controls the evolution of the test

• A Channel applies the changes that occurred to the parameters by the policy to the application being tested

• An Observer monitors the application being tested and broadcasts useful events to the event bus

• A Tracker is listening for events in the event bus and extracts or calculates useful values from them

• A Summarizer collects the values calculated by the tracker, groups them by test case and calculates the
min/max/average or other summarization values

You may want to read the Concepts section on the reasoning behind this separation or the Example section to see how
they work in action.

9

dcos-perf-test-driver Documentation, Release 0.1.0

3.1 Instantiating Components

Since there are no cross-component dependencies they can be instantiated and plugged into the bus when needed.
Only a static argument configuration would be required that is going to configure it’s behavior.

If we were to write it in a python code we would have written something like so:

bus.plug(
HttpChannel(
url="http://127.0.0.1:8080/some/api",
method="POST",
body='{"hello": "rest"}'

)
)

But since all the components are instantiated in the same way we can can completely avoid using code and express the
same thing in a YAML block like so:

- class: HttpChannel
url: http://127.0.0.1:8080/some/api
method: POST
body: |
{

"hello": "rest"
}

That’s why the DC/OS Performance Test Driver is using YAML files for it’s configuration.

3.2 Event Cascading

Since everything in the DC/OS Performance Test Driver is orchestrated through messages it’s important to identify the
test case each event belogs into. For this reason the driver is using Event Cascading as the means to describe which
event was emitted as a response to another.

Take the following diagram for example:

The Event Cascading is implemented by assigning unique IDs (called traceids) to every event and carrying the
related event IDs along when an event is emitted as a response (or in relation) to another.

10 Chapter 3. Architecture

dcos-perf-test-driver Documentation, Release 0.1.0

Usually, the root event is the ParameterUpdateEvent that is emitted when a test case is initiated and the param-
eter values are defined. Every other event that takes place in the test is carrying this ID.

Warning: If you are seeing unexpected results or behaviors it’s most probable that you have not taken into account
the event tracing.

Important: If you are a component developer you should always carry along the correct traceids when you are
publishing events. As a rule of thumb you should take care of the following two cases:

1. Actions that are triggered by an event should always publish events that carry along the traceids from the
originating event.

2. Actions that are not part of an event chain should publish events that carry along the traceids from the latest
ParameterUpateEvent observed.

3.3 Processing the metrics

In dcos-perf-test-driver the metric values are produced by the Trackers and archived the moment they are
emmmited and archived into an array of time series values.

3.3.1 Test Phase

In dcos-perf-test-driver the performance tests are executed for each parameter combination in question and
are repeated for one or more times in order to increase the statistics.

Each time the actual performance test is executed, a Test Phase is initiated.

3.3. Processing the metrics 11

dcos-perf-test-driver Documentation, Release 0.1.0

3.3.2 Timeseries

For every phase one or more metrics are being collected. The moment a metric is sampled it’s placed in an in-memory
time-series record.

This record is unique for the every parameter combination, effectively creating an Axis - Values representation.

These time series are further summarised or post-processed according to the needs of the reporter.

3.3.3 Summarized Values

When a phase is completed, the timeseries values are summarised using one or more summarisers, as defined in the
config.metrics configuration parameter.

Calculating the summarised values makes the results visualizable. For instance, you can pick a metric and a parameter
and easily create an 1D plot with the data.

3.3.4 Indicators

The indicators scalar values that describe the overall outcome of the test as a single number. They are useful to detect
deviations from the previous results and to raise alerts.

For instance, you can normalize the value of the time each marathon deployment takes against the number of applica-
tions you instructed to scale to, thus creating the meanDeploymentTimePerApp indicator.

12 Chapter 3. Architecture

CHAPTER 4

Example

Since it’s difficult to understand how the system works just by looking to the Architecture Diagram, we are going to
present a complete example.

1. We are going to start by describing how we created the tests based on the observations we want to make.

2. Then we are describing how our decisions are written down into configuration files.

3. And we are going to end by describing how the test is actually executed within the test driver.

4.1 The testing scenario

We have a marathon service that runs on 127.0.0.1:8080 and we want to see how well the endpoint /v2/
groups is responding as the load to the /v2/apps endpoint increases.

Having read the Concepts we decided that our axis is going to be the “deployments per second”, so
deploymentRate and we are going to explore the values from 100 to 1000 with an interval of 50.

To make sure that we are operating on a clean slate every time we also agreed that we should wait for the previous
deployments to complete before starting the new ones.

In addition, we decided that we are going to measure how long an HTTP request to the /v2/groups endpoint takes,
so our metric is the responseTime in seconds.

Effectively we want to measure:

𝑓𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇 𝑖𝑚𝑒(
{︀
100, 150, ...1000

}︀
)

Finally, since we will be constantly sampling the groups endpoint we are most certainly going to collect more than
one value for the same test case, so we are going to use the mean_err summarizer to collect the mean values with
uncertainty information.

Having defined the parameters and the metrics in a conceptual level we can already write them down in the
configuration file.

Since they do not target any particular component they are defined in the global configuration section like so:

13

dcos-perf-test-driver Documentation, Release 0.1.0

config:

Test parameters
parameters:
- name: deploymentRate

units: depl/s
desc: The number of deployments per second

Test metrics
metrics:
- name: responseTime

units: sec
desc: The time for an HTTP request to complete
summarize: [mean_err]

You can refer to the Global Configuration Statements for more details on what fields you can use and what’s their
interpretation.

Note: In the above example, the summarize field is using the compact expression for a built-in summarizer. The
equivalent full representation would be the following:

- name: responseTime
..
summarize:
- class: "@mean_err"

The full representation allows you to customize them even further, providing for example a different name (ex. for the
plots) or turning off the automatic outliers rejection.

- name: responseTime
..
summarize:
- class: "@mean_err"

name: "Mean (With Error)"
outliers: no

4.2 Configuring our black box

According to the The Black Box Abstraction we have to configure the components that are going to apply the changes
to marathon and collect the measurements.

4.2.1 Input

We are going to start by implementing the input direction of our black box, and more specifically we are going to
figure out which Channel are we going to use for applying the changes to marathon.

As we described above we need to make deploymentRate-requests per second. Browsing through the Channels
reference we notice the HTTPChannel. According to it’s documentation, it “performs an HTTP request every time a
parameter changes”.

We also notice that it accepts a repeat parameter, that is repeating the same request multiple times.

14 Chapter 4. Example

dcos-perf-test-driver Documentation, Release 0.1.0

By copying the fields of interest from the reference and using the correct Macros we compose the following configu-
ration fragment:

channels:
- class: channel.HTTPChannel
url: http://127.0.0.1:8080/v2/apps
verb: POST
repeat: "{{deploymentRate}}"
body: |

{
"id": "/scale-instances/{{uuid()}}",
"cmd": "sleep 1200",
"cpus": 0.1,
"mem": 64,
"disk": 0,
"instances": 0,
"backoffFactor": 1.0,
"backoffSeconds": 0

}

This instantiates a HTTPChannel class that is going to perform an HTTP POST to the endpoint http://127.0.
0.1:8080/v2/apps every time the value of a macro changes. In our case, the deploymentRate.

In addition, it is going to repeat this request “deploymentRate” times. This means 100 times on the first run, 150 on
the second etc. For the sake of the example let’s assume that all 1000 requests will be posted within a second so we
don’t have to take any other action for satisfying the “per second” part of the test scenario.

Note: The automatic triggering of the channel when a macro changes is a bit of a “magic” behavior only for the
channel configuration. It can be configured using the trigger syntax as described in Channel Triggers.

4.2.2 Output

We are now going to implement the output of our black box. As seen in the The Black Box Abstraction diagram we
need to define an Observer, a Tracker and a Summarizer. But let’s see in detail what they are about.

From our test scenario, we want to measure “how long an HTTP request to the /v2/groups endpoint takes”. Thus
we need to plug an appropriate component to perform this request.

We know from the documentation that the components that makes observations to the application being tested are the
Observers. By looking on the Observers reference page we find out that the HTTPTimingObserver is particularly
useful in our case.

We start by copying the example from the documentation page, removing the fields we don’t need and modifying the
values according to our needs

observers:
- class: observer.HTTPTimingObserver
url: http://127.0.0.1:8080/v2/groups
interval: 1

That’s it. Now while our tests are running the HTTPTimingObserver is going to poll the /v2/
groups endpoint every second. Looking into the Event Reference we see that this observer broadcasts the
HTTPTimingResultEvent when a measurement is completed.

Next, we have to define a Tracker that is going to convert the observed events into measurements. In our case we just
need to extract the fields of interest from the HTTPTimingResultEvent event. Again, by looking to the Trackers

4.2. Configuring our black box 15

dcos-perf-test-driver Documentation, Release 0.1.0

reference we see that EventAttributeTracker is what we need.

Again, we copy the example and adjust the values to our needs:

trackers:
- class: tracker.EventAttributeTracker
event: HTTPTimingResultEvent
extract:

- metric: responseTime
attrib: responseTime

Note: This might be a bit difficult to digest at a first glimpse, but it’s quite easy after you understand what it does:

1. It waits until a HTTPTimingResultEvent is dispatched in the bus

2. It extracts the responseTime attribute from the event

3. It stores it as a value for the responseTime metric that we defined on the first step.

Note: Not all events have fields. However for the ones that have, the Event Reference listing contains everything you
will need to know.

Finally, you will notice that we have already defined our Summarizer when we defined the metric on the first step.
It’s configuration belongs on the global section because it’s annotating the metric.

Having our black box defined we are going to continue with defining the parameter evolution policy on the next step.

4.3 Defining the axis evolution

As we previously mentioned, we want the deploymentRate to increase gradually from 100 to 1000 with an interval
of 50. But when are we advancing to the next?

Answering this question will help us pick the policy are we going to use. In principle we will need to read the Policies
class reference and pick the most fitting policy for our case, but briefly we could say:

1. Do we advance to the next value at fixed time intervals (ex. every minute)? Then we are going to use a
TimeEvolutionPolicy.

2. Do we advance to the next value when a well-described case is met? Then we are going to use the MultiStep-
Policy.

In our case we don’t want to overload the system, so we cannot use fixed timed intervals since an operation might take
longer than expected. So we are going to use the MultiStepPolicy.

Note: We are choosing MultiStepPolicy in favor of MultivariableExplorerPolicy, even though they are very close on
their features, because the former exposes a more elaborate configuration.

Now let’s answer the other question: Which is the “well-described” case that should be met before advancing to the
next value?

In our example we are going to wait until all the deployments have completed. To achieve this we are going to wait
until the correct number of the appropriate events is received.

16 Chapter 4. Example

dcos-perf-test-driver Documentation, Release 0.1.0

Let’s start first by copying the example configuration from the MultiStepPolicy and let’s keep only the steps
section for now. We are going to keep only one step. Following the examples, we are using the min/max/step config-
uration for the deploymentRate.

policies:
- class: policy.MultiStepPolicy
steps:

Explore deploymentRate from 100 to 1000 with interval 50
- name: Stress-Testing Marathon

values:
- parameter: deploymentRate

min: 100
max : 1000
step: 50

Technically, our policy is now syntactically correct. However, if you try to run it you will notice that it will scan full
range of options as fast as possible. That’s not what we want.

We notice on the MultiStepPolicy documentation the events section, and in particular the events.
advance event. That’s exactly what we want, but what event are we going to to listen for?

Let’s consider what components do we currently have that are broadcasting events:

1. We have an HTTPChannel that broadcasts HTTP life cycle events, such as HTTPRequestStartEvent,
HTTPRequestEndEvent, HTTPResponseStartEvent and HTTPResponseEndEvent – Not inter-
esting.

2. We have an HTTPTimingObserver that broadcasts the measurement HTTPTimingResultEvent event
– Not interesting.

3. We have the MultiStepPolicy that broadcasts the ParameterUpdatedEvent – Not interesting.

So it looks that we are going to need a new observer. Going back to the Observers we notice the MarathonPoller-
Observer. From it’s documentation we see that it subscribes to the marathon SSE event stream and brings in
the marathon events. More specifically, the MarathonDeploymentSuccessEvent that we need. That’s
perfect!

Again, we copy the example from the documentation and we adjust to our needs

observers:
...

- class: observer.MarathonPollerObserver
url: "http://127.0.0.1:8080"

Now that we have our observer in place, let’s go back to our policy configuration and let’s add an events section
with an advance field, pointing to the MarathonDeploymentSuccessEvent event:

policies:
- class: policy.MultiStepPolicy
steps:

Explore deploymentRate from 100 to 1000 with interval 50
- name: Stress-Testing Marathon

values:
- parameter: deploymentRate

min: 100
max : 1000
step: 50

4.3. Defining the axis evolution 17

dcos-perf-test-driver Documentation, Release 0.1.0

Advance when the deployment is successful
events:
advance: MarathonDeploymentSuccessEvent:notrace

Note the :notrace suffix of the event. We are using an Event Filters syntax to instruct the policy
to ignore tracing due to Event Cascading, since the policy does not have enough information to trace the
MarathonDeploymentSuccessEvent and all these events will be ignored.

Note: You may wonder when you should use :notrace and when not. In principle you should always check the
component documentation if the events it emits are properly cascaded and which are the event(s) they require in order
to properly trace it. If you are properly using them you should never have to use :notrace.

However there are also cases where the events you are waiting for do not belong on a trace. For example, the
TickEvent is sent 30 times per second, but it does not belong on a trace. Therefore if we don’t use :notrace all
of them will be filtered out.

In our particular case, the MarathonPollerObserver requires the deployments to be started using a MarathonDeploy-
Channel or a MarathonUpdateChannel, since it is listening for MarathonDeploymentRequestedEvent events
in order to extract the ID of the app/pod/group being deployed and link it to the appropriate status update event.

If you test the policy now you will notice that it’s indeed waiting for the first deployment success event to arrive, but
this is again not what we need.

We should wait until all the requests from the current test cases are handled. Effectively this means waiting for
deploymentRate number of events. This can be easily defined using the advance_condition section and the
events section:

policies:
- class: policy.MultiStepPolicy
steps:

Explore deploymentRate from 100 to 1000 with interval 50
- name: Stress-Testing Marathon

values:
- parameter: deploymentRate

min: 100
max : 1000
step: 50

Advance when the deployment is successful
events:
advance: MarathonDeploymentSuccessEvent

Advance only when we have received <deploymentRate> events
advance_condition:
events: "deploymentRate"

Note: You might wonder why we are not using the macro {deploymentRate} but we rather used the literal
deploymentRate?

That’s because according to the documentation this value can be any valid python expression where the parameter
values and the already existing definitions are available in the globals.

This allows you to have more elaborate advance conditions, such as: deploymentRate / 3 or 2 *

18 Chapter 4. Example

dcos-perf-test-driver Documentation, Release 0.1.0

deploymentRate.

4.4 Ensuring state integrity

If we try to mentally process the series of actions that are going to be taken when the tests are running, you will notice
that each test case is deploying some apps but they are never removed.

This means that we do not operate always on a clean marathon state. To mitigate this we need to invoke an one-time
action in between the tests. These actions are called tasks and you can find a list of them in the Tasks reference.

We notice that the marathon.RemoveGroup task can come in handy, since we are deploying apps inside the same
group. We also read on the table on the top of the page that we should trigger this task between the value changes. So
we should register the task on the intertest trigger.

Again, we copy the example configuration and we modify it to our needs:

tasks:
- class: tasks.marathon.RemoveGroup
at: intertest
url: "http://127.0.0.1:8080"
group: "/scale-instances"

Note: Note that with the MultiStepPolicy you can also customize further when some triggers are called. For example,
if you want the RemoveGroup task to be executed Before each time the value is changed (the default is After), you
can use the respective tasks section on it’s configuration:

policies:
- class: policy.MultiStepPolicy
steps:

Explore deploymentRate from 100 to 1000 with interval 50
- name: Stress-Testing Marathon

...

Fire "prevalue" trigger before changing the value
tasks:
pre_value: prevalue

tasks:

Register the RemoveGroup to be triggered on "prevalue"
- class: tasks.marathon.RemoveGroup
at: prevalue
url: "http://127.0.0.1:8080"
group: "scale-instances"

4.5 Reporting the results

Now that we have completed the test configuration it’s time to describe how and where the results will be collected.

4.4. Ensuring state integrity 19

dcos-perf-test-driver Documentation, Release 0.1.0

The test driver has a variety of reporters that we can choose from. You can see all of them in the Reporters reference.
However there is a handful that you are going frequently use. These are the reporters that we are going to plug in our
example.

4.5.1 Plots

First of all, we are interested into getting some visual feedback with the results. The test driver provides a PlotReporter
that can be used in this scenario.

This reporter visualizes the Summarized results on a plot where the axis is the test parameters and the values are the
measured results. An image will be generated for every metric in the configuration.

We noticed that all the parameters of the plot reporter are optional so we are not going to include any. This is as simple
as:

reporters:
- class: reporter.PlotReporter

This would yield a plot-responseTime.png file that looks like this:

Note: The plot reporter can also visualize data in two axes. In this case a 2D plot would be used instead.

Note: The plot reporter will not function with more than two axes. That’s because it’s not possible to visualize more

20 Chapter 4. Example

dcos-perf-test-driver Documentation, Release 0.1.0

than two-dimensional data on a static image.

4.5.2 Machine-Readable Data

Of course plots are easy to read, but usually you would need the data to be available in a machine-processable format.
You can choose between two options:

• The CSVReporter produces a comma-separated-values (CSV) file with the parameter values and the summarized
results

• The RawReporter produces a detailed JSON dump that includes everything that you would need for processing
or reproducing the tests.

Since we want to be verbose, we are going to plug a RawReporter:

reporters:
- class: reporter.RawReporter
filename: "results-raw.json"

Note: Having the results collected in a raw dump you can later use the dcos-compare-tool to compare runs.

4.6 Indicators

Let’s say that you are running this performance test in a CI environment and you want to see the evolution of the
measurements over time. What data would you submit to a time-series database?

Submitting the entire plot for every run is rather unhelpful, since you will end up with too many data and you will
need to come up with an elaborate data summarization during post-processing.

Instead, you can pre-calculate a summarized value from all the observations of every metric. You can achieve this
using the Indicators.

An indicator receives both metrics and parameters for every test case and calculates a single scalar value that that
carries some meaningful information from the entire run.

A frequently used one is the NormalizedMeanMetricIndicator. This indicator normalizes the summarized value of
every test case and calculates the mean of all these values.

You could say that for every value of axis_1 and every respective measurement of metric_1, summarized using
the sum_1 summarizer (ex. mean_err), the indicator can be expressed as:

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
1

𝑛
·

𝑛∑︁
𝑎𝑥𝑖𝑠1=[...]

(︂∑︀
𝑠𝑢𝑚1

𝑓𝑚𝑒𝑡𝑟𝑖𝑐1(𝑎𝑥𝑖𝑠1)

𝑎𝑥𝑖𝑠1

)︂
In our example, we would like to know what’s the average time it took for every instance to be deployed. For this, we
are going to calculate:

• The mean value of every deployment measurement (as we already do above)

• Then divide it (aka normalize it) by the number of apps being deployed

• Then calculate the mean of all the above measurements

This can be achieved using the NormalizedMeanMetricIndicator like so. Note that just like parameters and
metrics, the indicators belong on the global configuration:

4.6. Indicators 21

dcos-perf-test-driver Documentation, Release 0.1.0

config:
...
indicators:
Calculate `meanResponseTime` by calculating the normalizing average
of all the `responseTime` mean values, normalized against the current
deploymentRate
- name: meanResponseTime

class: indicator.NormalizedMeanMetricIndicator
metric: responseTime.mean_err
normalizeto: deploymentRate

4.7 Increasing our statistics

Finally, like with every statistical problem, you will most probably need to repeat your tests until you have enough
statistics.

This can be easily configured with the repeat parameter in the global configuration section:

config:

Repeat this test 5 times
repeat: 5

4.8 Parameterizing your configuration

You might notice that we are frequently repeating the base marathon URL http://127.0.0.1:8080. To avoid
this repetition we could use Macros.

A macro is an expression contained in double brackets, such as {{marathon_url}}. At run-time this macro would
be replaced with the contents of the Definition with the same name. For example we can change our observers like so:

observers:

Replace http://127.0.0.1:8080 with {{marathon_url}}
- class: observer.HTTPTimingObserver
url: {{marathon_url}}/v2/groups
interval: 1

Also replace http://127.0.0.1:8080 with {{marathon_url}}
- class: observer.MarathonPollerObserver
url: "{{marathon_url}}"

The value for the macro can either be defined using a define statement like so:

define:
marathon_url: http://127.0.0.1:8080

Or provided by the command-line, like so:

~$ dcos-perf-test-driver -Dmarathon_url=http://127.0.0.1:8080

22 Chapter 4. Example

dcos-perf-test-driver Documentation, Release 0.1.0

Note: Even though it is possible to use the above command-line as-is, it’s recommended to use the config.definitions
section to define which definitions can be provided from the command line.

For example, using:

config:
...
definitions:
- name: marathon_url

desc: The URL to marathon to use
required: yes

This way, if the user does not provide the marathon_url definition, the driver will exit with an error, instructing
the user to provide a value instead of silently ignoring it.

4.9 Running the tests

By now your configuration file should look something like the one found in the Configuration Example.

Assuming that you have saved it under the name scale-tests.yml you can launch it like so:

~$ dcos-perf-test-driver ./scale-tests.yml

If you observe a behaviour that you don’t expect, you can also run the driver in verbose mode. In this mode you will
also see the verbose, debug messages that could be helpful to troubleshoot some problems:

~$ dcos-perf-test-driver --verbose ./scale-tests.yml

Check the Usage section for more details on the command-line

4.9. Running the tests 23

dcos-perf-test-driver Documentation, Release 0.1.0

24 Chapter 4. Example

CHAPTER 5

Usage

The DC/OS Scale Test Driver is accepting one or more configuration files as it’s only positional argument. The
Configuration files describe which classes to activate and how to run the tests.

In addition, some parameters or metadata can be added as optional arguments via the –define and –meta flags.

usage: dcos-perf-test-driver [-h] [-r RESULTS] [-v] [-D DEFS] [-M META]
[config [config ...]]

The DC/OS Performance Tests Driver.

positional arguments:
config The configuration script to use.

optional arguments:
-h, --help show this help message and exit
-r RESULTS, --results RESULTS

The directory where to collect the results into
(default "results")

-v, --verbose Show verbose messages for every operation
-D DEFS, --define DEFS

Define one or more macro values for the tests.
-M META, --meta META Define one or more metadata value.

5.1 –define

dcos-perf-test-driver [--define name1=value1 | -D name2=value2] -D ...

The --define or -D argument is defining the value of one or more :ref:

25

dcos-perf-test-driver Documentation, Release 0.1.0

5.2 –meta

dcos-perf-test-driver [--meta name1=value1 | -M name2=value2] -D ...

The --meta or -D argument is values for one or more metadata. Such metadata will be part of the final results and
can also be defined through the config.meta configuration section.

Command-line metadata definition have higher priority than metadata defined in the configuration file.

5.3 –results

dcos-perf-test-driver [--results path/to/results | -r path/to/results]

The --results or -r argument specifies the location of the results folder to use. If missing the ./results folder
will be used.

5.4 –verbose

dcos-perf-test-driver [--verbose | -v]

The --verbose or -v argument enables full reporting on the actions being performed by the driver. In addition, this
flag will expand all exceptions to the full stack trace instead of only their title.

26 Chapter 5. Usage

CHAPTER 6

Cookbook

This cookbook contains a variety of copy-paste-able snippets to help you quickly compose your configuration file.

Compose it picking:

1. General Section Recipes

2. Channel Recipes

3. Observer Recipes

4. Tracker Recipes

5. Policy Recipes

6. Tasks Recipes

6.1 General Section Recipes

How to populate your config: section.

6.1.1 General Boilerplate

#
General test configuration
#
config:

title: "My Test Title"
repeat: 3

Test parameters
parameters:
- name: parameter1

desc: "Description of the parameter"
units: units

27

dcos-perf-test-driver Documentation, Release 0.1.0

Test metrics
metrics:
- name: metric1

desc: "Description of the metric"
units: units
summarize: [mean_err]

[Optional] Test indicators
indicators:
- name: mean_metric1

class: indicator.NormalizedMeanMetricIndicator
metric: metric1.mean_err
normalizeto: "parameter1"

6.1.2 Parameter Boilerplate

config:
parameters:
...

Test parameter
- name: parameter1

desc: "Description of the parameter"
units: units

6.1.3 Metric Boilerplate

config:
metrics:
...

Test metric
- name: metric1

desc: "Description of the metric"
units: units
summarize: [mean_err]

6.1.4 Summarizer Boilerplate

Extended format of config.metrics with the frequently used mean_err summarizer and a custom summarizer name.

config:
metrics:
- name: metric
...

Complete syntax of a metric summarizer
summarize:

- class: "@mean_err"
name: "Mean"
outliers: yes

28 Chapter 6. Cookbook

dcos-perf-test-driver Documentation, Release 0.1.0

6.1.5 Indicator Boilerplate

config:
...

Test indicator
- name: mean_metric1
class: indicator.NormalizedMeanMetricIndicator
metric: metric1.mean_err
normalizeto: "parameter1"

6.1.6 Required command-line definition

The following snippet will require the user to define the specified definition from the command-line:

config:
...

definitions:
- name: secret

desc: The secret password to use
required: yes

6.2 Channel Recipes

When a policy changes a parameter a channel takes an action to apply the new value on the application being observed.

The recipes here refer to when a parameter changes. . .

6.2.1 (Re)start an external app with a new command-line

This snippet will call out to the given application when a parameter changes. If the application is still running when a
parameter update arrives, the previous instance of the application will be killed:

channels:
...

- class: channel.CmdlineChannel
restart: no
shell: no

The command-line to execute
cmdline: "path/to/app --args {{parameter_1}}"

[Optional] The standard input to send to the application
stdin: |

some arbitrary payload with {{macros}}
in it's body.

[Optional] Environment variables to define
env:

variable: value
other: "value with {{macros}}"

6.2. Channel Recipes 29

dcos-perf-test-driver Documentation, Release 0.1.0

6.2.2 Deploy an app on marathon

Deploy a marathon app every time a parameter changes:

channels:
- class: channel.MarathonUpdateChannel
The base url to marathon
url: "{{marathon_url}}"

Our one deployment
deploy:

- type: app
spec: |
{

"id": "deployment",
"instances": "{{parameter1}}"

}

6.2.3 Deploy multiple apps on marathon

Deploy a variety of apps every time a parameter changes:

channels:
- class: channel.MarathonUpdateChannel
The base url to marathon
url: "{{marathon_url}}"

Our multiple deployments
deploy:

- type: app
spec: |
{

"id": "deployment1",
"instances": "{{parameter1}}"

}

- type: app
spec: |
{
"id": "deployment2",
"instances": "{{parameter1}}"

}

- type: app
spec: |
{
"id": "deployment3",
"instances": "{{parameter1}}"

}

6.2.4 Deploy a group of apps on marathon

Deploy a group of apps every time a parameter changes:

30 Chapter 6. Cookbook

dcos-perf-test-driver Documentation, Release 0.1.0

channels:
- class: channel.MarathonUpdateChannel
The base url to marathon
url: "{{marathon_url}}"

Our one deployment
deploy:

- type: group
spec: |
{

"id": "/apps",
"apps": [
{
"id": "/apps/app1",
"instances": "{{parameter1}}"

},
{
"id": "/apps/app2",
"instances": "{{parameter1}}"

}
]

}

6.2.5 Update an app on marathon

Update an existing application on marathon:

- class: channel.MarathonUpdateChannel
url: "{{marathon_url}}"
update:
- action: patch_app

Update up to 10 instances
limit: 10

Update only apps matching the regex
filter: "^/groups/variable_"

Update the given properties
patch:

env:
PARAMETER_VALUE: "{{parameter1}}"

6.2.6 Perform an HTTP request

Perform an arbitrary HTTP request every time a parameter changes:

channels:
- class: channel.HTTPChannel

The URL to send the requests at
url: http://127.0.0.1:8080/v2/apps

The body of the HTTP request
body: |

6.2. Channel Recipes 31

dcos-perf-test-driver Documentation, Release 0.1.0

{
"cmd": "sleep 1200",
"cpus": 0.1,
"mem": 64,
"disk": 0,
"instances": {{instances}},
"id": "/scale-instances/{{uuid()}}",
"backoffFactor": 1.0,
"backoffSeconds": 0

}

[Optional] The HTTP Verb to use (Defaults to 'GET')
verb: POST

[Optional] The HTTP headers to send
headers:

Accept: text/plain

6.2.7 Perform multiple HTTP requests

You can also repeat the HTTP requests using the repeat statement:

TODO: Implement this

6.3 Observer Recipes

TODO: Implement this

6.4 Tracker Recipes

TODO: Implement this

6.5 Policy Recipes

TODO: Implement this

6.6 Tasks Recipes

TODO: Implement this

6.7 Advanced Recipes

This section contains various copy-paste-friendly YAML recipes for addressing frequently-encountered problems.

32 Chapter 6. Cookbook

dcos-perf-test-driver Documentation, Release 0.1.0

6.7.1 Launching an app, not part of the test

Some times you might want to launch an application that is going to run for the duration of the test but it’s not active
part of the test.

To launch such applications you can use a CmdlineChannel with the following configuration:

channels:
- class: channel.CmdlineChannel

Start this app at launch time and keep it alive
atstart: yes
relaunch: yes

The command-line to launch.
cmdline: "path/to/app --args "

Note: It’s important not to include any {{macro}} in the channel. Doing so will link the channel to a parameter
and make it part of the test.

6.7.2 Including reference data in your plots

If you are running the tests as part of a CI you migth be interested into comparing the results to a reference run. To do
so, use the reference parameter in the PlotReporter.

The url should point to a URL where a raw dump (generated by a RawReporter) is available. This raw dump will be
used as a reference:

reporters:
- class: reporter.PlotReporter

Use the given reference
reference:

data: http://path.to/refernce-raw.json

The reference can be computed for 1D and 2D plots. For example:

6.7. Advanced Recipes 33

dcos-perf-test-driver Documentation, Release 0.1.0

34 Chapter 6. Cookbook

dcos-perf-test-driver Documentation, Release 0.1.0

6.7. Advanced Recipes 35

dcos-perf-test-driver Documentation, Release 0.1.0

36 Chapter 6. Cookbook

CHAPTER 7

Configuration

The dcos-perf-test-driver is congured through a human-readable YAML configuration file. This file defines
the steering parameters for the test harness and the parameters to passed down to the classes that compose the overall
scale test.

Ideally, the task of every class should quite abstract and can be configured into fit any testing scenario. In detail, there
are two major configuration groups:

• The Global Configuration Statements configuration – that is used by the test harness and the reporting services
in order to steer the test process.

• The Per-Class Configuration Statements configuration – that provides detailed configuration for every class
plugged into the harness.

7.1 Global Configuration Statements

The global configuration statements provide the information required by the test harness to drive the tests. This
configuration is shared between every component in the harness and contain the following types of information:

• Harness Configuration : That define how many times to repeat the tests, how long to wait before a test is
considered stale etc.

• Parameters, Metrics & Indicators : What kind of input parameters the tests will operate upon, and what kind
of metrics and indicators will be extracted from the test.

• Metadata : What kind of arbitrary metadata should be collected along with the results in order to identify this
run.

• Macros : The values of various macros further used in the configuration.

7.1.1 config

37

dcos-perf-test-driver Documentation, Release 0.1.0

config:
runs: 1
title: "Test title"
staleTimeout: 1200

The general test configuration section contains global information for every other test section.

config.runs

config:
...
runs: 5

Defines how many time to repeat the entire test suite in order to increase the quality of the statistics collected. The
default value is 1.

config.title

config:
...
title: "Some Title"

Defines the title of the test. This is mainly used by the reporting services.

config.staleTimeout

config:
...
staleTimeout: 1200

Defines how long to wait (in seconds) for a policy to change state, before considering it “Stale”.

The stale timeout is used as the last resort in order to continue running other test cases when one test case fails.

config.parameters

config:
...
parameters:
- name: parameterName

desc: A short description of the metric
units: sec
uuid: 1234567890

Defines the free variables of the test. Each parameter is effectively an axis for the test.

It’s important to define all the parameters that are going to take part in the test since some components are pre-
conditioning their structures based on this configuration.

The name and the summarize properties are the only ones required. The desc, units and uuid are only used
by the reporters.

If you are using the PostgREST reporter, the uuid should be a valid GUID for the parameter being tracked.

38 Chapter 7. Configuration

dcos-perf-test-driver Documentation, Release 0.1.0

config.metrics

config:
...
metrics:
- name: parameterName

desc: A short description of the metric
summarize: [min, max]
title: Legend Title
units: sec
uuid: 1234567890

Defines the measured values that should come as a result of the test.

Like with the parameters, it’s important to define all the metrics that take part in the test since some components are
pre-conditioning their structures based on this configuration.

The name and the summarize properties are the only ones required. The desc, title, uuid and units are
only used by the reporters.

If you are using the PostgREST reporter, the uuid should be a valid GUID for the metric being tracked.

The summarize array defines one or more summarizer classes to use for calculating a single scalar value from the
values of the timeseries. Note that there are two ways to define summarizers:

• The compact format accepts no configuration parameters, assumes that the name of the summariser (visible in
the reports) is it’s type and the functionality will be imported from the BuiltInSummarizer.

config:
...
metrics:

- name: parameterName
...
summarize: [min, max]

• The extended format accepts full configuration parameters and you can even specify your own summarizers.
You can still use the @name class name if you want to refer to a built-in summarizer.

config:
...
metrics:

- name: parameterName
...
summarize:
- class: summarizers.MyCustomSummarizer.summarisationFunction
name: "Name in plots"

config.indicators

config:
...
indicators:
- name: meanDeploymentTime

class: indicator.NormalizedMeanMetricIndicator
metric: deploymentTime.mean
parameter: instances

7.1. Global Configuration Statements 39

dcos-perf-test-driver Documentation, Release 0.1.0

Defines one or more Indicators that are going indicate the result of the test as a single scalar value. Usually an indicator
normalizes some of the metrics to the axis values and calculates a single number that represents the outcome of the
test.

For instance, the example above normalizes the mean value of all sampled deploymentTime values of each run, to the
value of the instances parameter. Effectively calculating the mean deployment time per instance indicator.

config.definitions

config:
...
definitions:
- name: secret

desc: The secret password to use
default: 1234
required: yes

Describes the definitions to require from the user to specify before the tests can be started. This section is only used to
provide high-level input-validation.

For instance, invoking the tool without providing the secret definition, will yield the following error:

ERROR 2017-07-04 15:18:00 Main: Missing required definition `secret` (The secret
→˓password to use)

The values of such definitions are provided via the –define command-line argument.

config.meta

config:
...
meta:
test: first-name

General purpose metadata that will accompany the test results.

It is also possible to provide metadata via the command-line using the –meta argument.

7.1.2 define

define:
parameter1: value
parameter2: another_value

The define section assigns values to various macro definitions that can be used later in the configuration file. Refer
to Macros for more details.

The values of such definitions can be overriden through the –define command-line argument.

7.2 Per-Class Configuration Statements

A scale test in dcos-perf-test-driver is implemented as an arbitrary number of interconnected classes
plugged into a shared event bus.

40 Chapter 7. Configuration

dcos-perf-test-driver Documentation, Release 0.1.0

Each class has it’s own configuration format and based on it’s task is separated into one of the following categories:

• policies : Drive the evolution of the parameters over time.

• channels : Define how a parameter change is passed to the app being tested.

• observers : Observe the app and extract useful information from it’s behaviour.

• trackers : Track events and emmit performance measurement metrics.

• reporters : Report the test results into a file, network or service.

7.2.1 policies

policies:
- class: policy.SomeClass
param1: value1
...

The policies drive the evolution of the performance test. They are receiving synchronisation events from the Event
Bus and they are changnging the test parameters.

Every change to the test parameters is triggering a state change to the application being tested. The change is applied
to the application through channels.

The class parameter points to a class from within the performance.driver.classess package to load.
Every class has it’s own configuration parameters check Class Reference for more details.

7.2.2 channels

channels:
- class: channel.SomeClass
param1: value1
...

Channels apply the changes of the parameters to the application being tested.

The class parameter points to a class from within the performance.driver.classess package to load.
Every class has it’s own configuration parameters check Class Reference for more details.

Channel Triggers

By default a channel is triggered when any of the macros used on it’s expression is modified. For example, the
following channel will be triggered when the parameter param1 changes:

channels:
- class: channel.SomeClass
param1: "{{param1}}"
param2: value2
...

Custom Triggers

There are two properties you can use in order to modify this behaviour:

7.2. Per-Class Configuration Statements 41

dcos-perf-test-driver Documentation, Release 0.1.0

The parameters property override the parameter heuristics and provide an explicit list of the parameters that should
be considered. In the following example the channel will be triggered only if param2 changes:

channels:
- class: channel.SomeClass
parameters: [param2]
...

The trigger property defines the triggering behavior and it can take the following values:

• always : Trigger every time a parameter changes, regardless if it exists in the parameters list or in the macros
or not

• matching (Default): Trigger every time a parameter listed in the parameters list or in the macros changes

• changed: Trigger every time a parameter listed in the parameters list or in the macros changes and the new
value is different than the previous one. This is particularly useful if you are working with multiple axes.

For example, to trigger the channel on every update, use:

channels:
- class: channel.SomeClass
trigger: always
...

7.2.3 observers

observers:
- class: observer.SomeClass
param1: value1
...

The observers are monitoring the application being tested and they are extracing useful events into the message bus.
Such events are usually used by the policy class to steer the evolution of the test and by the tracker classes to extract
metric measurements.

The class parameter points to a class from within the performance.driver.classess package to load.
Every class has it’s own configuration parameters check Class Reference for more details.

7.2.4 trackers

trackers:
- class: tracker.SomeClass
param1: value1
...

The trackers are extracting metric values by analysing the events emmited by the observers and other components in
the bus.

The class parameter points to a class from within the performance.driver.classess package to load.
Every class has it’s own configuration parameters check Class Reference for more details.

42 Chapter 7. Configuration

dcos-perf-test-driver Documentation, Release 0.1.0

7.2.5 reporters

reporters:
- class: tracker.SomeClass
param1: value1
...

The reporters collecting the test results and createing a report. This could mean either writing some results to the local
filesystem, or reporting the data to an online service.

The class parameter points to a class from within the performance.driver.classess package to load.
Every class has it’s own configuration parameters check Class Reference for more details.

7.2.6 tasks

tasks:
- class: tasks.SomeClass
at: trigger
...

The tasks are one-time operations that are executed at some trigger and do not participate in the actual scale test
process. Such tasks can be used to log-in into a DC/OS cluster, clean-up some test traces or prepare the environment.

The class parameter points to a class from within the performance.driver.classess package to load.
Every class has it’s own configuration parameters check Class Reference for more details.

The at parameter selects the trigger to use. Supported values for this parameter are:

• setup : Called when the sytem is ready and right before the policy is started.

• pretest : Called before every run

• intertest : Called right after a parameter change has occured

• posttest : Called after every run

• teardown : Called when the system is tearing down

7.3 Separating Configuration Files

As your configuration increases in size it’s some times helpful to separate it into multiple files. The
dcos-perf-test-driver implements this behaviour using the import: array:

import:
- metrics.yml
- parameters.yml

The location of every file is relative to the configuration file they are in.

This instructs dcos-perf-test-driver to load the given files and merge all their sections together. Note that
array statements and dictionary statements behave differntly when merged.

7.3.1 Merging arrays

Array statements are concatenated. This means that the following two files:

7.3. Separating Configuration Files 43

dcos-perf-test-driver Documentation, Release 0.1.0

First
observers:

- class: observer.FooObserver

Second
observers:

- class: observer.BarObserver

Will result in the following configuration:

observers:
- class: observer.FooObserver
- class: observer.BarObserver

7.3.2 Merging dictionaries

Dictionary statements are merged, meaning that same keys are replaced with the values coming from the configuration
file that comes last. This means that the following two files:

First
define:

foo: first
bar: another

Second
define:

foo: second
baz: other

Will result in the following configuration:

define:
foo: second
bar: another
baz: other

7.4 Macros

The dcos-perf-test-driver implements a minimal template engine that can be used to provide parametric
configuration to your test. For example, if you are launching a command-line application and some parameters need
to change over time you can use the {{parameter_name}} macro expression:

channels:
- class: channel.CmdlineChannel
cmdline: "benchmark_users --users={{users}}"

Such macros can appear at any place in your YAML configuration and they will be evaluated to the definition or
parameter with the given name. Refer to Value sources for more details.

Note: Be aware that macros can only appear in YAML values and not in the key names. For instance, the following
expression is invalid:

44 Chapter 7. Configuration

dcos-perf-test-driver Documentation, Release 0.1.0

config:
"{{prefix}}_run": "always"

7.4.1 Value sources

The values of the macros are coming from various sources, in the following order:

• Definitions in the configuration file through the define statement.

• Definitions given by the command-line through the –define argument.

• The test parameters and their values during the current test phase.

7.4.2 Default values

It is possible to provide a default value to your macros using the {{macro|default}} expression. For example:

reporters:
- class: reporter.PostgRESTReporter
url: "{{reporter_url|http://127.0.0.1:4000}}"

7.4.3 Functions

It is possible to call a small set of functions in your macro. The following functions are available:

uuid

Compute a unique GUID ID. For example:

channels:
- class: channel.CmdlineChannel
cmdline: "ctl useradd --name=user-{{uuid()}}"

date(format)

Compose a date expression from the current time and date. For example:

reporters:
- class: reporter.S3Reporter
path: "metrics/{{date(%Y%m%d)}}-results.json"

The format argument is exactly what python’s strftime accepts.

safepath(expression)

Replaces all the ‘unsafe’ characters for a path expression with ‘_’

7.4. Macros 45

dcos-perf-test-driver Documentation, Release 0.1.0

reporters:
- class: reporter.S3Reporter
path: "metrics/{{safepath(test_name)}}-results.json"

The expression argument can be any legit macro expression.

eval(expression)

Evaluates the given expression as a python expression.

policies:
- class: policy.SimplePolicy
value: "{{eval(apps * tasks)}}"

7.4.4 Metadata as macros

In some cases (for example in the reporter definitions) it might be needed to evaluate the value of a metadata. You can
do so by using the {{meta:name}} syntax. For example:

reporters:
- class: reporter.S3Reporter
bucket: marathon-artifacts
path: "metrics/{{meta:version}}-results.json"

7.5 Configuration Example

The following configuration example accompanies the Example test case in the documentation. Refer to it for mroe
details.

##
Global test configuration
###
config:

Repeat this test 5 times
repeat: 5

The title of the scale test
title: "Scale Tests"

Define the parameters this policy will be updating
parameters:
- name: deploymentRate

units: depl/s
desc: The number of deployments per second

Define the metrics we are measuring
metrics:
- name: responseTime

units: sec
desc: The time for an HTTP request to complete
summarize: [mean_err]

46 Chapter 7. Configuration

dcos-perf-test-driver Documentation, Release 0.1.0

Introduce some indicators that will be used to extract
the outcome of the test as a single scalar value
indicators:

Calculate `meanResponseTime` by calculating the normalizing average
of all the `responseTime` mean values, normalized against the current
deploymentRate
- name: meanResponseTime

class: indicator.NormalizedMeanMetricIndicator
metric: responseTime.mean_err
normalizeto: deploymentRate

###
Macro Values
###
define:

Define `marathon_url` that is required by other fragments
marathon_url: http://127.0.0.1:8080

###
Test Metadata
###
meta:

All these values will be included in the test results but
do not participate in the actual test
test: 1-app-n-instances
env: local
config: simulator

###
Test policy configuration
###
policies:

We are using a multi-step policy due to it's configuration
flexibility, even though our tests have only one step.
- class: policy.MultiStepPolicy
steps:

Explore deploymentRate from 100 to 1000 with interval 50
- name: Stress-Testing Marathon

values:
- parameter: deploymentRate
min: 100
max : 1000
step: 50

Advance when the deployment is successful
events:
advance: MarathonDeploymentSuccessEvent:notrace

Advance only when we have received <deploymentRate> events
advance_condition:
events: "deploymentRate"

7.5. Configuration Example 47

dcos-perf-test-driver Documentation, Release 0.1.0

###
Channel configuration
###
channels:

Perform an HTTP request for every `deploymentRate` parameter change
- class: channel.HTTPChannel
url: {{marathon_url}}/v2/apps
verb: POST
repeat: "{{deploymentRate}}"
body: |

{
"id": "/scale-instances/{{uuid()}}",
"cmd": "sleep 1200",
"cpus": 0.1,
"mem": 64,
"disk": 0,
"instances": 0,
"backoffFactor": 1.0,
"backoffSeconds": 0

}

###
Observer configuration
###
observers:

We are measuring the HTTP response time of the /v2/groups endpoint
- class: observer.HTTPTimingObserver
url: {{marathon_url}}/v2/groups
interval: 1

We also need to listen for marathon deployment success events in order
to advance to the next test values, so we also need a marathon poller
- class: observer.MarathonPollerObserver
url: "{{marathon_url}}"

###
Tracker configuration
###
trackers:

Track the `responseTime`, by extracting the `responseTime` from the
HTTP measurement result event
- class: tracker.EventAttributeTracker
event: HTTPTimingResultEvent
extract:

- metric: responseTime
attrib: responseTime

###
Result reporters
###
reporters:

Dump raw time series results to results/dump.json
- class: reporter.RawReporter

48 Chapter 7. Configuration

dcos-perf-test-driver Documentation, Release 0.1.0

filename: results/dump.json

Dump summarized CSV values to results/results.csv
- class: reporter.CSVReporter
filename: results/results.csv

Create plots as images to results/plot-*.png
- class: reporter.PlotReporter
prefix: results/plot-

###
One-time tasks
###
tasks:

Right after ever test run we should remove all the instances
- class: tasks.marathon.RemoveGroup
url: "{{marathon_url}}"
group: /scale-instances
at: intertest

Also remove the tests if they were abruptly terminated
- class: tasks.marathon.RemoveGroup
url: "{{marathon_url}}"
group: /scale-instances
at: teardown

7.5. Configuration Example 49

dcos-perf-test-driver Documentation, Release 0.1.0

50 Chapter 7. Configuration

CHAPTER 8

Class Reference

This section contains the detailed configuration and description of every class available in the DC/OS Performance
Test Driver.

8.1 Policies

The policy classes are driving the tests by controlling the evolution of the test parameters over time. The parameters
changed are applied to the test through the Channels.

8.1.1 MultivariableExplorerPolicy

class performance.driver.classes.policy.MultivariableExplorerPolicy(config,
eventbus,
parameter-
Batch)

The Multi-Variable Exploration Policy is running one scale test for every product of the parameters defined in
the matrix.

policies:
- class: policy.MultivariableExplorerPolicy

The following rules describe the permutation matrix
matrix:

The key is the name of the parameter to control
param:
...

A "discreet" parameter can take one of the specified values
apps:
type: discreet
values: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

51

dcos-perf-test-driver Documentation, Release 0.1.0

A "sample" parameter takes any value within a numerical range
size:
type: sample
min: 0 # Default
max: 1 # Default
step: 1 # Default
samples: 10 # Default

A "range" parameter takes all the values within the given range
instances:
type: range
min: 0
max: 1
step: 1

The event binding configuration
events:

Signals are events that define a terminal condition and it's status
#
For example, in this case when the `MarathonDeploymentSuccessEvent`
is received, the test will be completed with status `OK`
#
signal:
OK: MarathonDeploymentSuccessEvent
FAILED: MarathonDeploymentFailedEvent
... : ...

[Optional] Wait for the given number of signal events before
considering the test complete.
#
This parameter is an expression evaluated at run-time, so you
could use anything that can go within a python's `eval` statement
#
For example: "discreet + 2"
#
signalEventCount: 1

[Optional] Start the tests with this event is received
start: EventToWaitUntilReady

This policy is first computing all possible combinations of the parameter matrix given and is then running the
tests for every one.

The policy will start immediately when the test driver is ready unless the start event is specified. In that case
the policy will wait for this event before starting with the first test.

The policy continues with the next test only when a signal event is received. Such events are defined in the
signal dictionary. Since a test can either complete successfully or fail you are expected to provide the status
indication for every signal event.

It is also possible to wait for more than one signal event before considering the test complete. To specify the
number of events to expect you can use the signalEventCount parameter.

However since the number of events to expect depends on an arbitrary number of factors, it’s possible to use
an expression instead of a value. For the expression you can use the names of the parameters taking part in the
matrix and the special variable _i that contains the number of the test, starting from 1.

For example signalEventCount: "apps + size/2"

52 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

8.1.2 TimeEvolutionPolicy

class performance.driver.classes.policy.TimeEvolutionPolicy(config, eventbus, param-
eterBatch)

The Time Evolution Policy is changing a parameter monotonically as the time evolves.

policies:
- class: policy.TimeEvolutionPolicy

Configure which parameters to evolve over time
evolve:

The name of the parameter to change
- parameter: parameterName

[Optional] The interval (in seconds) at which to evolve the
parameter (default is 1 second)
interval: 1

[Optional] By how much to increment the parameter (default is 1)
step: 1

[Optional] The initial value of the parameter (default is 0)
min: 0

[Optional] The final value of the parameter, after which the
test is completed.
max: 10

The event binding configuration
events:

[Optional] Terminate the tests when this event is received.
end: EventToWaitForCompletion

[Optional] Start the tests with this event is received
start: EventToWaitUntilReady

This policy is first computing all possible combinations of the parameter matrix given and is then running the
tests for every one.

8.1.3 MultiStepPolicy

class performance.driver.classes.policy.MultiStepPolicy(config, eventbus, parameter-
Batch)

The Step Policy evolves various parameters through various steps.

policies:
- class: policy.MultiStepPolicy

Configure the policy steps
steps:

The name of the step
- name: First Step

The values to explore

8.1. Policies 53

dcos-perf-test-driver Documentation, Release 0.1.0

values:

1) A fixed-value parameter
- parameter: name
value: 1

2) A fixed-value parameter calculated with an expression
- parameter: name
value: "log(parameter1) + parameter2"

3) A fixed list of values
- parameter: name
values: [1, 2, 3, 4, 5 ...]

4) A calculated range of values
- parameter: name
min: 0
max : 100
step: 1

Set to `no` if you don't want to include the `max` value
inclusive: no

5) A sampled subset of a uniformly distributed values
- parameter: name
min: 0
max: 10000
step: 1
sample: 100

Set to `no` if you don't want to include the `max` value
inclusive: no

[Optional] Trigger the following named tasks
tasks:

[Optional] Run this named task before start
start: startTask

[Optional] Run this named task after step completion
end: endTask

[Optional] Run this named before a value change
pre_value: advanceTask

[Optional] Run this named after a value change
post_value: advanceTask

[Optional] Event configuration
events:

[Optional] Wait for this to start the step
start: EventName

[Optional] Wait for this event to end the step
end: EventName

[Optional] Wait for this event to fail this step

54 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

fail: EventName

[Optional] Wait for this event before advancing to the next value
advance: EventName

[Optional] Custom end condition
end_condition:

[Optional] Wait for the specified number of end/fail events
before considering the step completed
events: 1

[Optional] Wait for the specified number of seconds after the
final step is completed before completing the test
linger: 0

[Optional] Custom advance condition
advance_condition:

[Optional] Wait for the specified number of advance events
before considering the value ready to advance. Note that this
can be a python expression
events: ""

[Optional] If the step was not advanced by itself in the given
time, marked is a timed out and continue with the next
timeout: 10s

[Optional] What flag to set on the run that advanced due to a
timeout. Set this to `OK` to make timeout a legit action or
`FAILED` to make timeout a critical failure.
timeout_status: TIMEOUT

This policy is first computing all possible combinations of the parameter matrix given and is then running the
tests for every one.

Important: The MultiStepPolicy is respecting the event tracing principle. This means that all the events
in the events section will be matched only if they derive from the same step of a policy action.

If the events you are listening for do not belong on a trace initiated by the current step, use the :notrace indicator.

For example, let’s say that policy sets the number of instances to 3, that triggers a deployment that eventually
triggers a DeploymentCompletedEvent when completed. In this case you can listen for advance:
DeploymentCompletedEvent events.

However, if you are advancing at clock ticks, they are not part of a trace initiated by the policy and therefore
you must use: `advance: TickEvent:notrace

8.1.4 SimplePolicy

class performance.driver.classes.policy.SimplePolicy(config, eventbus, parameterBatch)
The Simple Policy submits a single parameter change event and terminates when the designated end condition
is met. No repetition or parameter exploration is performed.

8.1. Policies 55

dcos-perf-test-driver Documentation, Release 0.1.0

policies:
- class: policy.SimplePolicy

Which parameters to submit
parameters:

apps: 1

The event binding configuration
events:

[Optional] Terminate the tests when this event is received.
end: EventToWaitForCompletion

[Optional] Start the tests with this event is received
start: EventToWaitUntilReady

[Optional] Maximum running time for this policy
timeout: 10s

This policy can be used if you are not interested about parameter exploration or any other feature of the driver,
but you rather want to observe the system response on a particular condition.

8.2 Channels

The channel classes are applying the test values to the application being tested. They are responsible for translating
the modification of the scalar test parameter to one or more actions that need to be taken in order to implement the test.

After a channel has applied the values, the Observers are used to extract useful events from the application for further
processing.

For example, the CmdlineChannel is re-starting the application with a different command-line, every time the test
parameters have changed.

8.2.1 CmdlineChannel

class performance.driver.classes.channel.CmdlineChannel(*args, **kwargs)
The Command-line Channel launches an application, passes the test parameters through command-line argu-
ments and monitors it’s standard output and error.

channels:
- class: channel.CmdlineChannel

The command-line to launch.
cmdline: "path/to/app --args {{macros}}"

[Optional] The standard input to send to the application
stdin: |

some arbitrary payload with {{macros}}
in it's body.

[Optional] Environment variables to define
env:

variable: value
other: "value with {{macros}}"

56 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

[Optional] The directory to launch this app in
cwd: "{{marathon_repo_dir}}"

[Optional] The script to use for teardown
teardown: stop_daemon

[Optional] If set to `yes` the app will be launched as soon
as the driver is up and running.
atstart: yes

[Optional] If set to `yes` (default) the app will be re-launched
if it exits on it's own.
restart: yes

[Optional] If set to `yes` the "cmdline" expression will be evalued
in a shell.
shell: no

[Optional] The time between the SIGINT and the SIGKILL signal
gracePeriod: 10s

[Optional] Change the `kind` of log messages emitted by this channel
instead of using the default 'stdout' / 'stderr'
kind:

stdout: custom_out
stderr: custom_err

When a parameter is changed, the channel will kill the process and re-launch it with the new command-line.

For every line in standard inout or output, a LogLineEvent is emitted with the contents of the line.

When the application launched through this channel exits the channel can take two actions depending on it’s
configuration:

• If restart: yes is specitied (default), the channel will re-launch the application in oder to always
keep it running.

• If restart: no is specified, the channel will give up and publish a CmdlineExitZeroEvent or
a CmdlineExitNonzeroEvent according to the exit code of the application.

Note: Note that if there are no {{macro}} defined anywhere in the body of the configuration this channel
will not be triggered when a parameter is updated and thus the application will never be launched.

If you still want the application to be launched, use the atstart: yes parameter to instruct the channel to
launch the application at start.

8.2.2 HTTPChannel

class performance.driver.classes.channel.HTTPChannel(*args, **kwargs)
The HTTP Channel performs an HTTP Requests when a parameter changes.

channels:
- class: channel.HTTPChannel

The URL to send the requests at
url: http://127.0.0.1:8080/v2/apps

8.2. Channels 57

dcos-perf-test-driver Documentation, Release 0.1.0

The body of the HTTP request
body: |

{
"cmd": "sleep 1200",
"cpus": 0.1,
"mem": 64,
"disk": 0,
"instances": {{instances}},
"id": "/scale-instances/{{uuid()}}",
"backoffFactor": 1.0,
"backoffSeconds": 0

}

[Optional] The HTTP Verb to use (Defaults to 'GET')
verb: POST

[Optional] The HTTP headers to send
headers:

Accept: text/plain

[Optional] How many times to re-send the request (can be
a macro value)
repeat: 1234

[Optional] How long to wait between re-sends (in seconds)
If missing the next request will be sent as soon as the previous
has completed
repeatInterval: 1234

[Optional] For which event to wait before re-sending the request.
repeatAfter: event

When a parameter is changed, a new HTTP request is made. If a repeat parameter is specified, the same
HTTP request will be sent again, that many times.

Various events are published from this channel, that can be used to synchronise other components or track
metrics.

• When an HTTP request is initiated an HTTPRequestStartEvent is published.

• When an HTTP request is completed and the response is pending, an HTTPFirstRequestEndEvent
is published.

• When the HTTP response is starting, an HTTPFirstResponseStartEvent is published.

• When the HTTP response is completed, an HTTPResponseEndEvent is published.

If you are using the repeat configuration parameter you can also use the following events:

• When the first HTTP request is started, the HTTPFirstRequestStartEvent is published.

• When the last HTTP request is started, the HTTPLastRequestStartEvent is published.

• When the first HTTP request is completed, the HTTPFirstRequestEndEvent is published.

• When the last HTTP request is completed, the HTTPLastRequestEndEvent is published.

• When the first HTTP response is started, the HTTPFirstResponseStartEvent is published.

• When the last HTTP response is started, the HTTPLastResponseStartEvent is published.

58 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

• When the first HTTP response is completed, the HTTPFirstResponseEndEvent is published.

• When the last HTTP response is completed, the HTTPLastResponseEndEvent is published.

Therefore it’s possble to track the progress of the entire repeat batch, aswell as the progress of an individual
HTTP event.

Note: This channel will automatically inject an Authorization header if a dcos_auth_token definition
exists, so you don’t have to specify it through the headers configuration.

Note that a dcos_auth_token can be dynamically injected via an authentication task.

8.2.3 MarathonUpdateChannel

class performance.driver.classes.channel.MarathonUpdateChannel(config, eventbus)
The Marathon Update Channel is performing arbitrary updates to existing apps, groups or pods in marathon,
based on the given rules.

channels:
- class: channel.MarathonUpdateChannel

The base url to marathon
url: "{{marathon_url}}"

One or more updates to perform
update:

`patch_app` action is updating all or some applications
and modifies the given properties
- action: patch_app

The properties to patch
patch:
instances: 3

[Optional] Update only application names that match the regex.
If missing, all applications are selected.
filter: "^/groups/variable_"

[Optional] Update at most the given number of apps.
If missing, all applications are updated.
limit: 10

[Optional] Shuffle apps before picking them (default: yes)
shuffle: no

[Optional] Additional headers to include to the marathon request
headers:
x-Originating-From: Python

When a parameter is changed, the channel will kill the process and re-launch it with the new command-line.

8.2. Channels 59

dcos-perf-test-driver Documentation, Release 0.1.0

8.2.4 MarathonDeployChannel

class performance.driver.classes.channel.MarathonDeployChannel(*args, **kwargs)
The Marathon Deploy Channel is performing one or more deployment on marathon based on the given rules.

channels:
- class: channel.MarathonDeployChannel

The base url to marathon
url: "{{marathon_url}}"

[Optional] Retry deployments with default configuration
retry: yes

[Optional] Retry with detailed configuration
retry:

[Optional] How many times to re-try
tries: 10

[Optional] How long to wait between retries
interval: 1s

One or more deployments to perform
deploy:

The type of the deployment
- type: app

The app/pod/group spec of the deployment
spec: |
{
"id": "deployment"

}

[Optional] Repeat this deployment for the given number of times
repeat: 10
repeat: "{{instances}}"
repeat: "{{eval(instances * 3)}}"

[Optional] How many deployments to perform in parallel
When a deployment is completed, another one will be scheduled
a soon as possible, but at most `parallel` deployment requests
will be active. This is mutually exclusive to `burst`.
parallel: 1

[Optional] [OR] How many deployments to do in a single burst
When all the deployments in the burst are completed, a new burst
will be posted. This is mutually exclusive to `parallel.
burst: 100

[Optional] Throttle the rate of deployments at a given RPS
rate: 100

[Optional] Stall the deployment for the given time before placing
the first HTTP request
delay: 10s

60 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

8.3 Observers

The observer classes are monitoring the application being tested and extract useful events. Such events are either
required by the Policies in order to evolve the tests, or tracked by the Trackers in order to calculate the test results.

8.3.1 HTTPTimingObserver

class performance.driver.classes.observer.HTTPTimingObserver(*args, **kwargs)
The HTTP Timing Observer is performing HTTP requests to the given endpoint and is measuring the request
and response times.

observers:
- class: observer.HTTPTimingObserver

The URL to send the requests at
url: http://127.0.0.1:8080/v2/apps

[Optional] The interval of the reqeusts (seconds)
interval: 1

[Optional] The body of the HTTP request
body: |

{
"cmd": "sleep 1200",
"cpus": 0.1,
"mem": 64,
"disk": 0,
"instances": {{instances}},
"id": "/scale-instances/{{uuid()}}",
"backoffFactor": 1.0,
"backoffSeconds": 0

}

[Optional] The HTTP Verb to use (Defaults to 'GET')
verb: POST

[Optional] The HTTP headers to send
headers:

Accept: text/plain

This observer is publishing a HTTPTimingResultEvent every time a sample is taken. Refer to the event
documentation for more details.

8.3.2 JMXObserver

class performance.driver.classes.observer.JMXObserver(*args, **kwargs)
The JMX Observer connects to the java management console of a running java application and extracts the given
metrics.

observers:
- class: observer.JMXObserver

[Optional] Re-send measured values on ParameterUpdateEvent
resendOnUpdate: yes

8.3. Observers 61

dcos-perf-test-driver Documentation, Release 0.1.0

Connection information
connect:

[Optional] Specify the host/port where to connect
host: 127.0.0.1
port: 9010

[Optional] Execute the given shell expression and assume the STDOUT
contents is the PID where to attach. If available, {{cmdlinepid}}
will contain the PID of the last detected PID from the cmdline
channel
--
DANGER!! Evaluated as a shell expression
--
pid_from: "pgrep -P $(pgrep -P {{cmdlinepid}})"

Which metrics to extract
metrics:

Specify the name of the metric and the source
- field: tagName

The java Management Interface MBean to use (Object Name)
mbean: "java.lang:type=Threading"

The attribute value to extract
attrib: ThreadCount

[Optional] Python evaluation expression for the value
value: "value"

Optional event configuration
events:

[Optional] Wait for this event before activating the observer
activate: MarathonStartedEvent

[Optional] If this event is received the observer is deactivated
deactivate: ExitEvent

This observer is going to launch a utility process that is going to attach on the specified JVM instance. Upon
successful connection it’s going to start extracting all the useful information as JMXMeasurement events in
the message bus.

Such events can be passed down to metrics using the JMXTracker tracker.

8.3.3 LogStaxObserver

class performance.driver.classes.observer.LogStaxObserver(*args, **kwargs)
The Logstax Observer is logstash-like observer for dcos-perf-test-driver that uses some event contents as the
line source and a set of rules for creating fields for post-processing.

observers:
- class: observer.LogStaxObserver

An array of filters to apply on every line
filters:

62 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

Grok Pattern Matching

- type: grok

Match the given field(s) for GROK expressions
match:
message: "^%{IP:httpHost} - (?<user>%{WORD}|-).*"

[Optional] Overwrite the specified fields with the values
extracted from the grok pattern. By default only new fields
are appended.
overwrite: [message, name]

[Optional] Add the given fields to the message
add_field:
source: grok

[Optional] Remove the given fields from the message
remove_field: [source]

[Optional] Add the given tags in the message
add_tag: [foo, bar]

[Optional] Remove the given tags in the message
remove_tag: [bar, baz]

[Optional] Which event(s) to listen for and which fields to extract
events:

By default it's using the `LogLineEvent`
- name: LogLineEvent
field: line

[Optional] One or more `codecs` to apply on the incoming lines.
These codecs convert one or more log lines into
codecs:

Pass-through every incoming line to a rule matcher
- type: singleline

Group multiple lines into a block and then pass it to the
rule matcher as an array of lines. Refer to the `MultilineCodec`
for more details.
- type: multiline
lines:
- match: firstLine.*
- match: secondLine.*

This observer is trying to reproduce a logstash set-up, using the LogLineEvent as the only source. It is first
passing the events through a codec that is going to create a processable messages. Each message contains fields
and tags.

By default, the singleline codec is populating the message field with the contents of the line. The multiline codec
is more elaborate and can be used in order to extract multi-line blocks from the incoming stream.

The messages are then passed to the filters. If a filter matches the incoming message it is going to apply the
transformations described.

8.3. Observers 63

dcos-perf-test-driver Documentation, Release 0.1.0

When the filter process is completed, the observer is going to braodcast a LogStaxMessageEvent that can
be processed at a later time by the LogStaxTracker in order to extract useful metrics.

MultilineCodec

class performance.driver.classes.observer.logstax.codecs.MultilineCodec(config)
The multi-line codec is able to collect more than one matching lines into a single message.

observers:
- class: observer.LogstaxObserver

filters:

- codec:
class: logstax.codecs.MultlineCodec

The multiple lines to match, as one regex rule per line
lines:

Match the given regex on the line
- match: .*

[Optional] Set to `yes` to ignore case
ignorecase: yes

[Optional] Set to `yes` to repeat indefinitely or
to a number to repeat up to the given number of times
repeat: 4

[Optional] Set to `yet` to make this rule optional
optional: no

Example: Match the given regex on the next line
repeat this pattern 2 times
- match: .*
repeat: 2

Example: Optionally match this regex on the next line
- match: .*
optional: yes

Example: Match the given regex until it stops matching
- match: .*
repeat: yes

[Optional] Set to `yes` to accept incomplete multiline matches
acceptIncomplete: no

[Optional] Set to the new-line character you want to use when joining
newline: ";""

For example, to join together lines that start with “::” you can use:

...
lines:
- match: "^::.*$"

repeat: yes

Or, to join together lines that open a bracket and close it on another line:

64 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

...
lines:
- match: "^.*{$"
- match: "^.*[^}]$"

repeat: yes

SingleLineCodec

class performance.driver.classes.observer.logstax.codecs.SingleLineCodec(config)
The simple line codec is forwarding the line received as-is.

observers:
- class: observer.LogstaxObserver

filters:

- codec:
class: logstax.codecs.SingleLineCodec

8.3.4 MarathonEventsObserver

class performance.driver.classes.observer.MarathonEventsObserver(*args,
**kwargs)

The Marathon Events Observer is extracting high-level events by subscribing to the Server-Side Events endpoint
on marathon.

observers:
- class: observer.MarathonEventsObserver

The URL to the marathon SSE endpoint
url: "{{marathon_url}}/v2/events"

[Optional] Use an external curl process for receiving the events
instead of the built-in raw SSE client
curl: no

[Optional] Use the timestamp from the event. If set to no, the time
the event is arrived to the perf-driver is used
useEventTimestamp: no

[Optional] Additional headers to send
headers:

Accept: test/plain

Since this observer requires an active HTTP session to marathon, it also publishes the
MarathonStartedEvent when an HTTP connection was successfully established.

The following events are forwarded from the event bus:

• MarathonDeploymentStepSuccessEvent

• MarathonDeploymentStepFailureEvent

• MarathonDeploymentInfoEvent

• MarathonDeploymentSuccessEvent

• MarathonDeploymentFailedEvent

8.3. Observers 65

dcos-perf-test-driver Documentation, Release 0.1.0

Note: In order to properly populcate the event’s trace ID, this observer is also listening for http channel requests
in order to extract the affected application name(s).

Note: This observer will automatically inject an Authorization header if a dcos_auth_token defini-
tion exists, so you don’t have to specify it through the headers configuration.

Note that a dcos_auth_token can be dynamically injected via an authentication task.

8.3.5 MarathonLogsObserver

class performance.driver.classes.observer.MarathonLogsObserver(*args, **kwargs)
This observer is based on the LogStaxObserver functionality in order to find and filter-out the marathon lines.

observers:
- class: observer.MarathonLogsObserver

This observer accepts no configuration. It is processing the LogLineEvent messages dispatched by other
observers or channels (ex. the CmdlineChannel channel).

Warning: This observer will currently only work if marathon is launched through a CmdlineChannel.

8.3.6 MarathonMetricsObserver

class performance.driver.classes.observer.MarathonMetricsObserver(*args,
**kwargs)

The Marathon Metrics Observer is observing for changes in the marathon /stats endpoint and is emitting events
according to it’s configuration

observers:
- class: observer.MarathonMetricsObserver

The URL to the marathon metrics endpoint
url: "{{marathon_url}}/metrics"

[Optional] Additional headers to send
headers:

Accept: test/plain

This observer is polling the /metrics endpoint 2 times per second and for every value that is changed, a
MetricUpdateEvent event is published.

Note: The name of the parameter is always the flattened name in the JSON response. For example, a parameter
change in the following path:

{
"foo": {

"bar.baz": {
"bax": 1

}

66 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

}
}

Will be broadcasted as a change in the following path:

foo.bar.baz.bax: 1

Note: This observer will automatically inject an Authorization header if a dcos_auth_token defini-
tion exists, so you don’t have to specify it through the headers configuration.

Note that a dcos_auth_token can be dynamically injected via an authentication task.

8.3.7 MarathonPollerObserver

class performance.driver.classes.observer.MarathonPollerObserver(*args,
**kwargs)

The Marathon Poller Observer is a polling-based fallback observer that can fully replace the
MarathonEventsObserver when the SSE event bus is not available.

observers:
- class: observer.MarathonPollerObserver

The URL to the marathon base
url: "{{marathon_url}}"

[Optional] Additional headers to send
headers:

Accept: test/plain

[Optional] How long to wait between consecutive polls (seconds)
interval: 0.5

[Optional] How long to wait before considering the deployment "Failed"
If set to 0 the deployment will never fail.
failureTimeout: 0

[Optional] How many times to re-try polling the endpoint before
considering the connection closed
retries: 3

[Optional] Event binding
events:

[Optional] Which event to wait to start polling
start: StartEvent

[Optional] Which event to wait to stop polling
stop: TeardownEvent

This observer is polling the /groups endpoint as fast as possible and it calculates deferences from the previ-
ously observed state. Any differences are propagated as virtual deployment events as:

• MarathonDeploymentSuccessEvent

8.3. Observers 67

dcos-perf-test-driver Documentation, Release 0.1.0

• MarathonDeploymentFailedEvent

If requested, the poller is going to look for MarathonDeploymentStartedEvent events and is going to
wait for it to be completed in a given time. If the time is passed, a synthetic failure event will be generated:

• MarathonDeploymentFailedEvent

Note: This observer will automatically inject an Authorization header if a dcos_auth_token defini-
tion exists, so you don’t have to specify it through the headers configuration.

Note that a dcos_auth_token can be dynamically injected via an authentication task.

8.4 Trackers

The tracker classes are monitoring events in the event bus and are producing metric values. You most certainly
need them in order to collect your results.

Refer to the Event Reference to know the events broadcasted in the bus.

8.4.1 DurationTracker

class performance.driver.classes.tracker.DurationTracker(*args, **kwargs)
Tracks the duration between a start and an end event.

trackers:
- class: tracker.DurationTracker

The metric where to write the measured value to
metric: someMetric

The relevant events
events:

The event to start counting from
(This can be a filter expression)
start: StartEventFilter

The event to stop counting at
(This can be a filter expression)
end: EndEventFilter

This tracker always operates within a tracking session, initiated by a ParameterUpdateEvent and termi-
nated by the next ParameterUpdateEvent, or the completion of the test.

Important: The start and end events must contain the trace IDs of the originating
ParameterUpdateEvent. Otherwise they won’t be measured.

8.4.2 EventAttributeTracker

class performance.driver.classes.tracker.EventAttributeTracker(*args, **kwargs)
The Event Value Tracker is extracting a value of an attribute of an event into a metric.

68 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

trackers:
- class: tracker.EventAttributeTracker

The event filter to handle
event: HTTPResponseEnd

One or more attributes to extract
extract:

The metric where to write the result
- metric: metricName

[OR] The attribute to extract the value from
attrib: attribName

[OR] The expression to use to evaluate a value from the event
eval: "event.attribute1 + event.attribute2"

[Optional] Extract the trace ID from the event(s) that match the
given filter. If missing, the trace ID of the event is used.
traceIdFrom: ParameterUpdateEvent

This tracker is frequently used in conjunction with observers that broadcast measurements as single events.

For example you can use this tracker to extract JMX measurements as metrics:

trackers:
- class: tracker.EventAttributeTracker

event: JMXMeasurement
extract:

- metric: metricName
attrib: "fields['jmxFieldName']""

Or you can extract raw log line messages as a metric:

trackers:
- class: tracker.EventAttributeTracker

event: LogLineEvent
extract:

- metric: metricName
attrib: "line"

8.4.3 CountTracker

class performance.driver.classes.tracker.CountTracker(*args, **kwargs)
Tracks the occurrences of an event within the tracking session.

trackers:
- class: tracker.CountTracker

The metric where to write the measured value to
metric: someMetric

The event to count
(This can be a filter expression)
events: SomeEvent

8.4. Trackers 69

dcos-perf-test-driver Documentation, Release 0.1.0

[Optional] The increment step (this can be a python expression)
step: 1

This tracker always operates within a tracking session, initiated by a ParameterUpdateEvent and termi-
nated by the next ParameterUpdateEvent, or the completion of the test.

Important: The event must contain the trace IDs of the originating ParameterUpdateEvent, otherwise
the events won’t be measured.

8.4.4 DumpMetricTracker

class performance.driver.classes.tracker.DumpMetricTracker(*args, **kwargs)
The Dump Metric Tracker is dumping metrics collected by observers into the results.

trackers:
- class: tracker.DumpMetricTracker

The mapping between the marathon metric and the configured metric
map:

gauges.jvm.memory.total.used.value: marathonMemTotalUsage
gauges.jvm.memory.heap.used.value: marathonMemHeapUsage
gauges.jvm.threads.count.value: marathonThreadsCount
gauges.jvm.threads.blocked.count.value: marathonThreadsBlocked
gauges.jvm.threads.waiting.count.value: marathonThreadsWaiting

This tracker is simply translating the name of the metric collected by an observer (usually the
MarathonMetricsObserver) into the metric collected by the scale test.

8.4.5 LogStaxTracker

class performance.driver.classes.tracker.LogStaxTracker(*args, **kwargs)
The Logstax Tracker is forwarding the values of the LogStax tokens as result metrics.

trackers:
- class: tracker.LogStaxTracker

Which tokens to collect
collect:

The name of the metric to store the resulting value
- metric: nameOfMetric

A python expression evaluated at run-time and gives the value
to assign to the metric. You can use all definitions, parameters,
and field values in your scope
value: "fieldInMessage * parameter / definition"

[Optional] Extract the trace ID from the event(s) that match the
given filter.
traceIdFrom: ParameterUpdateEvent

[Optional] The filter to apply on LogStax messages

70 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

filter:

[Optional] The message should have all the specified tags present
all_tags: [foo, bar]
tags: [foo, bar]

[Optional] The message should have some of the specified tags present
some_tags: [baz, bax]

[Optional] The message should have all the specified fields present
all_fields: [foo, bar]

[Optional] The message should have some of the specified fields
→˓present

some_fields: [foo, bar]

[Optional] The message should have the given field values
fields:
foo: "foovalue"

You can use this tracker in combination with LogStaxObserver in order to collect useful tokens present in
the log lines of the application being tested.

8.5 Tasks

The tasks classes contain micro-actions that are executed at some phase of the test and do not participate in the final
result.

These tasks are executed on a specified trigger, through the at: configuration parameter. For example:

tasks:

- at: setup
class: ...
...

8.5.1 Known Triggers

The following table summarises the task triggers available in the driver.

Task
Name

SourceDescription

setup Ses-
sion

Called when the sytem is ready and right before the first policy is started. Use this trigger to
initialize your app state.

pretestSes-
sion

Called before every run is started. Use this trigger to wipe the state before the tests are started.

posttestSes-
sion

Called right after every run. Use this trigger to clean-up your system between the runs.

teardownSes-
sion

Called when the system has finished all tests and is about to start reporting. Use this trigger to
clean-up your system.

intertestPol-
icy

Called inbetween the tests, when a parameter changes. This implementation depends on the policy
you are using. Usually you should use this trigger to bring your system into a known state right
before every value is applied.

8.5. Tasks 71

dcos-perf-test-driver Documentation, Release 0.1.0

8.5.2 auth.AuthEE

class performance.driver.classes.tasks.auth.AuthEE(config, eventbus)
Authenticate against an Enterprise-Edition cluster

tasks:
- class: tasks.auth.AuthEE

at: ...

The username to authenticate against
user: bootstrapuser

The password to use
password: deleteme

[Optional] The base cluster URL
Instead of specifying this configuration parameter you can specify
the `cluster_url` definition (not recommended)
cluster_url: "https://cluster.dcos.io"

This task authenticates against the enterprise cluster and obtains an authentication token.

This task sets the dcos_auth_token definition and makes it available for other components to use.

8.5.3 auth.AuthOpen

class performance.driver.classes.tasks.auth.AuthOpen(config, eventbus)
Authenticate against an Open-Source Edition cluster

tasks:
- class: tasks.auth.AuthOpen

at: ...

The user token to (re-)use
token: bootstrapuser

[Optional] The base cluster URL
Instead of specifying this configuration parameter you can specify
the `cluster_url` definition (not recommended)
cluster_url: "https://cluster.dcos.io"

This task authenticates against the enterprise cluster and obtains an authentication token.

This task sets the dcos_auth_token definition and makes it available for other components to use.

8.5.4 http.Request

class performance.driver.classes.tasks.http.Request(config, eventbus)
Perform an arbitrary HTTP request as a single-shot task

tasks:
- class: tasks.http.Request

at: ...

The URL to send the requests at
url: http://127.0.0.1:8080/v2/apps

72 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

[Optional] The body of the HTTP request
body: |

{
"cmd": "sleep 1200",
"cpus": 0.1,
"mem": 64,
"disk": 0,
"instances": {{instances}},
"id": "/scale-instances/{{uuid()}}",
"backoffFactor": 1.0,
"backoffSeconds": 0

}

[Optional] The HTTP Verb to use (Defaults to 'GET')
verb: POST

[Optional] How many times to repeat the same HTTP request
Note that in this case you can use the {{_i}} macro
repeat: 10

[Optional] The HTTP headers to send
headers:

Accept: text/plain

Note: This channel will automatically inject an Authorization header if a dcos_auth_token definition
exists, so you don’t have to specify it through the headers configuration.

Note that a dcos_auth_token can be dynamically injected via an authentication task.

8.5.5 marathon.RemoveAllApps

class performance.driver.classes.tasks.marathon.RemoveAllApps(*args, **kwargs)
Remove matching apps from marathon

tasks:
- class: tasks.marathon.RemoveAllApps

at: ...

The base url to marathon
url: "{{marathon_url}}"

[Optional] Additional headers to include to the marathon request
headers:

x-Originating-From: Python

This task is enumerating all apps in the root group and delets each one of them.

Note: This task will block the execution of other tasks until all deployments are completed. This is intentional
in order allow other tasks to be executed in series.

8.5. Tasks 73

dcos-perf-test-driver Documentation, Release 0.1.0

8.5.6 marathon.RemoveMatchingApps

class performance.driver.classes.tasks.marathon.RemoveMatchingApps(*args,
**kwargs)

Removes matching apps from marathon

tasks:
- class: tasks.marathon.RemoveMatchingApps

at: ...

The base url to marathon
url: "{{marathon_url}}"

The string portion in the app name to match
match: "test-01-"

[Optional] Additional headers to include to the marathon request
headers:

x-Originating-From: Python

This task is enumerating all apps in the root group, checking wich ones contain the string contained in the
match parameter and removes them.

Note: This task will block the execution of other tasks until all deployments are completed. This is intentional
in order allow other tasks to be executed in series.

8.5.7 marathon.RemoveGroup

class performance.driver.classes.tasks.marathon.RemoveGroup(*args, **kwargs)
Removes a specific group from marathon

tasks:
- class: tasks.marathon.RemoveGroup

at: ...

The base url to marathon
url: "{{marathon_url}}"

The group to remove
group: "tests/01"

[Optional] Additional headers to include to the marathon request
headers:

x-Originating-From: Python

This task removes the given group from marathon.

Note: This task will block the execution of other tasks until all deployments are completed. This is intentional
in order allow other tasks to be executed in series.

74 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

8.6 Reporters

The reporter classes are reporting the results into a human-readable, or machine-processable format.

8.6.1 CSVReporter

class performance.driver.classes.reporter.CSVReporter(config, generalConfig, eventbus)
The CSV Reporter is creating a comma-separated value (.csv) file with the axis values and summarised metric
values for every run.

reporters:
- class: reporter.CSVReporter

[Optional] The filename to write the csv file into
filename: results.csv

[Optional] The column separator character to use
separator: ","

[Optional] Which value to use if a parameter is missing
default: 0

This reporter is writing the summarised results in a CSV file. The resulting file will have the following columns:

Parameters Summarised Metrics Flags
p1 p2 . . . m1 (sum) m2 (sum) . . . f1 f2 . . .

The first line will contain the names of the parameters, metrics and flags.

Note: To configure which summariser(s) to use on every metric, use the summarize parameter in the con-
fig.metrics config.

8.6.2 DataDogReporter

class performance.driver.classes.reporter.DataDogReporter(config, generalConfig,
eventbus)

The DataDog Reporter is uploading the indicators into DataDog for archiving and alerting usage.

reporters:
- class: reporter.DataDogReporter

The API Key to use
api_key: 1234567890abcdef

The App Key to use
app_key: 1234567890abcdef

The data points to submit
points:

The name of the metric to submit to DataDog and the
indicator to read the data from

8.6. Reporters 75

dcos-perf-test-driver Documentation, Release 0.1.0

- name: memory
indicator: meanMemoryUsage

[Optional] The hostname to use as the agent name in datadog
If missing the network name of the machine will be used
hostname: test.host

[Optional] Prefix of the metrics (Defaults to `dcos.perf.`)
prefix: "dcos.perf."

The DataDog reporter is using the DataDog API to submit one or more indicator values as data points.

Note: This reporter is only collecting the indicators. Metric values or summaries cannot be reported to
DataDog. Use the reporter.DataDogMetricReporter instead.

8.6.3 DataDogMetricReporter

class performance.driver.classes.reporter.DataDogMetricReporter(config, general-
Config, eventbus)

The DataDog Metric Reporter uploads the raw metric values to DataDog the moment they are collected.

reporters:
- class: reporter.DataDogMetricReporter

The API Key to use
api_key: 1234567890abcdef

[Optional] The hostname to use as the agent name in datadog
If missing the network name of the machine will be used
hostname: test.host

[Optional] Prefix of the metrics (Defaults to `dcos.perf.`)
prefix: "dcos.perf."

[Optional] How frequently to flush the metrics to DataDog
flushInterval: 5s

[Optional] Report configuration. If missing, the default behavior
is to report the summarized metrics at the end of the test.
report:

[Optional] The string `all` indicates that all the metrics should
be submitted to DataDog
metrics: all

[Optional] OR a list of metric names can be provided
metrics:
- metricA
- metricB

[Optional] OR you can use a dictionary to provide an alias
metrics:
metricA: aliasedMetricA
metricB: aliasedMetricB

76 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

[Optional] Set to `yes` to submit the raw values the moment they
are collected.
raw: yes

[Optional] Set to `yes` to submit summarized values of the metrics
at the end of the test run.
summarized: yes

[Optional] The string `all` indicates that all the indicators should
be submitted to DataDog
indicators: all

[Optional] OR a list of indicator names can be provided
indicators:
- indicatorA
- indicatorB

[Optional] OR you can use a dictionary to provide an alias
indicators:
indicatorA: aliasedIndicatorA
indicatorB: aliasedIndicatorB

The DataDog reporter is using the DataDog API to submit the values of the test metrics to DataDog in real-time.

8.6.4 PlotReporter

class performance.driver.classes.reporter.PlotReporter(config, generalConfig, event-
bus)

The Plot Reporter is creating a PNG plot with the measured values and storing it in the results folder.

reporters:
- class: reporter.PlotReporter

[Optional] Default parameter value to use if not specified
default: 0

[Optional] Filename prefix and suffix (without the extension)
prefix: "plot-"
suffix: ""

[Optional] The X and Y axis scale (for all plots)
Can be one of: 'linear', 'log', 'log2', 'log10'
xscale: linear
yscale: log2

[Optional] The colormap to use when plotting 2D plots
Valid options from: https://matplotlib.org/examples/color/colormaps_

→˓reference.html
colormap: winter

[Optional] Plot the raw values as a scatter plot and not the summarised
raw: False

[Optional] Reference data structure
reference:

Path to raw reference JSON

8.6. Reporters 77

dcos-perf-test-driver Documentation, Release 0.1.0

data: http://path.to/refernce-raw.json

[Optional] The colormap to use when plotting the reference 2D plots
ratiocolormap: bwr

[Optional] Name of the reference data
name: ref

[Optional] Headers to send along with the request
headers:
Authentication: "token={{token}}"

This reporter will generate an image plot for every metric defined. The axis is the 1 or 2 parameters of the test.

Warning: The PlotReporter can be used only if the total number of parameters is 1 or 2, since it’s not
possible to display plots with more than 3 axes.

Trying to use it otherwise will result in an exception being thrown.

8.6.5 PostgRESTReporter

class performance.driver.classes.reporter.PostgRESTReporter(config, generalConfig,
eventbus)

The PostgREST Reporter is uploading the full set of results in a structured manner in a Postgres database using
a PostgREST API endpoint.

reporters:
- class: reporter.PostgRESTReporter

The URL to the PostgREST endpoint
url: "http://127.0.0.1:4000"

[Optional] The database table prefix
prefix: "profile_data_"

This reporter is uploading the following information

Important: The Postgres database is using uuid-based lookup for every parameter and metric. Therefire it’s
required to include the uuid parameter in the config.metrics and config.parameters configuration.

This de-couples the representation of the metric across different projects or versions of the same project.

Postgres SQL Schema

This document explains the table schema the PostgRESTReporter reporter is expected to which to report the data.

Terminology

• job : A scale test job

• run : A repeating scale test sampling process in order to collect statistics. One or more runs are executed within
a single job.

78 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

• test : A scale test that is executed during a run

• phase : A checkpoint during the execution of a test during which a new set of parameters is given to the
application and a new sampling process begins.

• parameter : An input value to the test. For example instances=10.

• mmetric : An output value from the test. For example deployTime=1.42s

Tables

*_job Job Indexing Table

This table keeps track of the high-level job structure. Since more than one project will be using the same database, the
project field should be populated with the name of the project that started this job.

DDL

CREATE TABLE metric_data.perf_test_job
(

jid uuid NOT NULL,
started timestamp without time zone NOT NULL,
completed timestamp without time zone NOT NULL,
status integer NOT NULL,
project character varying(128) NOT NULL,
PRIMARY KEY (jid)

)
WITH (

OIDS = FALSE
);

ALTER TABLE metric_data.perf_test_job
OWNER to postgrest;

*_job_meta Job Metadata

Each job has a set of metadata that can be used to identify the process being executed. For example environment,
version, git_hash etc.

They are unique for every run, therefore they are groupped with the run ID.

DDL

CREATE TABLE metric_data.perf_test_job_meta
(

id serial NOT NULL,
jid uuid NOT NULL,
name character varying(32) NOT NULL,
value character varying(128) NOT NULL,
PRIMARY KEY (id),
CONSTRAINT jid FOREIGN KEY (jid)

REFERENCES metric_data.perf_test_job (jid) MATCH SIMPLE

8.6. Reporters 79

dcos-perf-test-driver Documentation, Release 0.1.0

ON UPDATE NO ACTION
ON DELETE NO ACTION

)
WITH (

OIDS = FALSE
);

ALTER TABLE metric_data.perf_test_job_meta
OWNER to postgrest;

*_job_phases Job Phases

Eventually the test will go through various phases that are repeated during every run. Since the phase is groupping
various parameter/metric combinations, we are using the job_phases table to index them.

(This table could actually be merged into the phase_ tables below)

DDL

CREATE TABLE metric_data.perf_test_job_phases
(

pid uuid NOT NULL,
jid uuid NOT NULL,
run integer NOT NULL,
"timestamp" timestamp without time zone NOT NULL,
PRIMARY KEY (pid),
CONSTRAINT jid FOREIGN KEY (jid)

REFERENCES metric_data.perf_test_job (jid) MATCH SIMPLE
ON UPDATE NO ACTION
ON DELETE NO ACTION

)
WITH (

OIDS = FALSE
);

ALTER TABLE metric_data.perf_test_job_phases
OWNER to postgresql;

*_lookup_metrics Metric lookup table

Since a metric might be renamed or changed over time, we are using UUIDs to refer to metrics. This table contains
the lookup information between the UUID and the metric name.

CREATE TABLE metric_data.perf_test_lookup_metrics
(

metric uuid NOT NULL,
name character varying(32) NOT NULL,
title character varying(128) NOT NULL,
units character varying(16),
PRIMARY KEY (metric)

)
WITH (

OIDS = FALSE

80 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

);

ALTER TABLE metric_data.perf_test_lookup_metrics
OWNER to postgrest;

*_lookup_parameters Parameter lookup table

Like the lookup metrics table, this table contains the lookup information between the UUID and the parameter name.

CREATE TABLE metric_data.perf_test_lookup_parameters
(

parameter uuid NOT NULL,
name character varying(32) NOT NULL,
title character varying(128) NOT NULL,
units character varying(16),
PRIMARY KEY (parameter)

)
WITH (

OIDS = FALSE
);

ALTER TABLE metric_data.perf_test_lookup_parameters
OWNER to postgrest;

*_phase_flags Phase Flags

During each phase one or more status flags might be raised, indicating internal failures or other status information.
These flags are submitted when the phase is completed and it’s useful to collect them.

CREATE TABLE metric_data.perf_test_phase_flags
(

id serial NOT NULL,
pid uuid NOT NULL,
name character varying(32) NOT NULL,
value character varying(128) NOT NULL,
PRIMARY KEY (id),
CONSTRAINT pid FOREIGN KEY (pid)

REFERENCES metric_data.perf_test_job_phases (pid) MATCH SIMPLE
ON UPDATE NO ACTION
ON DELETE NO ACTION

)
WITH (

OIDS = FALSE
);

ALTER TABLE metric_data.perf_test_phase_flags
OWNER to postgrest;

*_phase_params Phase Parameters

During each phase the test is given some parameters. These parameters are usually the plot axis that we are interested
in. (ex. instances)

8.6. Reporters 81

dcos-perf-test-driver Documentation, Release 0.1.0

DDL

CREATE TABLE metric_data.perf_test_phase_params
(

id serial NOT NULL,
pid uuid NOT NULL,
parameter uuid NOT NULL,
value character varying(128) NOT NULL,
PRIMARY KEY (id),
CONSTRAINT pid FOREIGN KEY (pid)

REFERENCES metric_data.perf_test_job_phases (pid) MATCH SIMPLE
ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT parameter FOREIGN KEY (parameter)
REFERENCES metric_data.perf_test_lookup_parameters (parameter) MATCH SIMPLE
ON UPDATE NO ACTION
ON DELETE NO ACTION

)
WITH (

OIDS = FALSE
);

ALTER TABLE metric_data.perf_test_phase_flags
OWNER to postgrest;

*_phase_metrics Phase Metrics

During the test various metrics are extracted and emmited the moment their sampling is completed. These metrics are
effectively the results of the test.

DDL

CREATE TABLE metric_data.perf_test_phase_metrics
(

id serial NOT NULL,
pid uuid NOT NULL,
metric uuid NOT NULL,
value numeric NOT NULL,
timestamp timestamp without time zone NOT NULL,
PRIMARY KEY (id),
CONSTRAINT pid FOREIGN KEY (pid)

REFERENCES metric_data.perf_test_job_phases (pid) MATCH SIMPLE
ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT metric FOREIGN KEY (metric)
REFERENCES metric_data.perf_test_lookup_metrics (metric) MATCH SIMPLE
ON UPDATE NO ACTION
ON DELETE NO ACTION

)
WITH (

OIDS = FALSE
);

82 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

ALTER TABLE metric_data.perf_test_phase_flags
OWNER to postgrest;

Querying

The following query can be used to fetch a 1D plot for jobs that have only 1 axis on it’s parameters:

SELECT
"metric_data"."perf_test_job_phases".jid,
"metric_data"."perf_test_phase_params"."value" AS "x",
"metric_data"."perf_test_phase_metrics"."value" AS "y"

FROM
"metric_data"."perf_test_phase_params"
JOIN "metric_data"."perf_test_phase_metrics"

ON "metric_data"."perf_test_phase_params".pid =
"metric_data"."perf_test_phase_metrics".pid

JOIN "metric_data"."perf_test_job_phases"
ON "metric_data"."perf_test_phase_params".pid =

"metric_data"."perf_test_job_phases".pid
WHERE

-- The axis you want to view (assuming only 1 dimention)
"metric_data"."perf_test_phase_params"."parameter" =

'4a003e85-e8bb-4a95-a340-eec1727cfd0d' AND

-- The metric you want to plot
"metric_data"."perf_test_phase_metrics"."metric" =

'cfac77fc-eb24-4862-aedd-89066441c416' AND

-- Job selection based on it's metadata.
-- In this example we are selecting the latest `master` version.
"metric_data"."perf_test_job_phases".jid IN (

SELECT
"metric_data"."perf_test_job_meta".jid

FROM
"metric_data"."perf_test_job_meta"

WHERE
"metric_data"."perf_test_job_meta"."name" = 'version' AND
"metric_data"."perf_test_job_meta"."value" = 'master'

ORDER BY
"metric_data"."perf_test_job_meta".id DESC

LIMIT 1
)

8.6.6 RawReporter

class performance.driver.classes.reporter.RawReporter(*args, **kwargs)
The Raw Reporter is creating a raw dump of the results in the results folder in JSON format.

reporters:
- class: reporter.RawReporter

Where to dump the results
filename: "results-raw.json"

8.6. Reporters 83

dcos-perf-test-driver Documentation, Release 0.1.0

[Optional] Include event traces
events:

[Optional] Include events that pass through the given expression
include: FilterExpression

[Optional] Exclude events that pass through the given expression
exclude: FilterExpression

[Optional] Group the events to their traces
traces: yes

The JSON structure of the data included is the following:

{

// Timing information
"time": {

"started": "",
"completed": ""

},

// The configuration used to run this test
"config": {

...
},

// The values for the indicators
"indicators": {

"indicator": 1.23,
...

},

// The metadata of the run
"meta": {

"test": "1-app-n-instances",
...

},

// Raw dump of the timeseries for every phase
"raw": [

{

// One or more status flags collected in this phase
"flags": {
"status": "OK"

},

// The values of all parameter (axes) in this phase
"parameters": {
"apps": 1,
"instances": 1

},

// The time-series values for every phase
"values": {
"metricName": [

84 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

// Each metric is composed of the timestamp of it's
// sampling time and the value
[
1499696193.822527,
11

],
...

]
}

}
],

// Summarised dump of the raw timeseries above, in the same
// structure
"sum": [

{

// One or more status flags collected in this phase
"flags": {
"status": "OK"

},

// The values of all parameter (axes) in this phase
"parameters": {
"apps": 1,
"instances": 1

},

// The summarised values of each timeseries
"values": {
"metricName": {

// Here are the summarisers you selected in the `metric`
// configuration parameter.
"sum": 123.4,
"mean": 123.4,
...

}
}

}
]

}

8.6.7 RawEventsReporter

class performance.driver.classes.reporter.RawEventsReporter(*args)
The Raw Events Reporter is dumping every event in the eventBus to a file that can be used for offline event
processing. You can also use this reporter for debugging the performance driver internals.

reporters:
- class: reporter.RawEventsReporter

[Optional] Set to `yes` to track TickEvents
Note that including tick events might introduce a lot of noise to

8.6. Reporters 85

dcos-perf-test-driver Documentation, Release 0.1.0

your data and/or increase the reporting impact.
tickEvents: no

Where to dump the events
filename: "events.dump"

The log file is encoded with the following rules:

1. The events are encoded in plain-text

2. Each event is separated with a new line

3. Each line contains two columns separated with semicolon

4. The first column contains the unix timestamp of the event

5. The second column contains the name of the event

6. The third column contains the field values for the event encoded as a JSON string.

For example:

// Timestamp // Name // Properties //
1500891843.976068;SomeEventName;{"prop":"value", ...}
...

This format allows for simple grepping and more elaborate parsing. For example

cat event.dump | grep ';TickEvent;' | wc -l

8.6.8 S3Reporter

class performance.driver.classes.reporter.S3Reporter(*args, **kwargs)
The S3 Reporter is uploading a raw dump of the results in a bucket in Amazon’s S3 services

reporters:
- class: reporter.S3Reporter

The name of the S3 bucket
bucket: dcos-perf-test-results

[Optional] If ommited, you must provide the AWS_ACCESS_KEY_ID
environment variable
aws_access_key_id: ...

[Optional] If ommited, you must provide the AWS_SECRET_ACCESS_KEY
environment variable
aws_secret_access_key: ...

[Optional] The path in the bucket where to save the file
path: results-raw.json

[Optional] A canned ACL. One of: private, public-read,
public-read-write, authenticated-read, bucket-owner-read,
bucket-owner-full-control
acl: private

[Optional] Put the filename uploaded on the given index file
index:

86 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

The path to the index JSON file
path: path/to/index.json

The index entry to update
entry: some_key

[Optional] How many items to keep under this key
max_entries: 100

[Optional] The bucket name if different than the above
bucket: dcos-perf-test-results

This reporter behaves exactly like RawReporter, but the generated JSON blob is uploaded to an S3 bucket
instead of a file in your local filesystem.

8.7 Indicators

The indicator classes compute a single scalar value from the results. This scalar value can be used as an indicator
of the outcome fo the test.

8.7.1 NormalizedMeanMetricIndicator

class performance.driver.classes.indicator.NormalizedMeanMetricIndicator(config)
Calculates the average of the metrics of all runs, normalized by the given value of parameters.

Note that this needs to be defined in the global `config` section
config:

indicators:
- class: indicator.NormalizedMeanMetricIndicator

The name of this indicator
name: someIndicator

The metric and summarizer to use in <metric>.<summarizer>
format
metric: someMetric.someSummarizer

Normalize each test case measurement to the specified parameter
normalizeto: normalizeAgainst

[Optional] You could also use a python expression. The parameters
and the global definitions are available as global variables
normalizeto: 0.8 * normalizeAgainst

8.7.2 NormalizedMinMetricIndicator

class performance.driver.classes.indicator.NormalizedMeanMetricIndicator(config)
Calculates the average of the metrics of all runs, normalized by the given value of parameters.

8.7. Indicators 87

dcos-perf-test-driver Documentation, Release 0.1.0

Note that this needs to be defined in the global `config` section
config:

indicators:
- class: indicator.NormalizedMeanMetricIndicator

The name of this indicator
name: someIndicator

The metric and summarizer to use in <metric>.<summarizer>
format
metric: someMetric.someSummarizer

Normalize each test case measurement to the specified parameter
normalizeto: normalizeAgainst

[Optional] You could also use a python expression. The parameters
and the global definitions are available as global variables
normalizeto: 0.8 * normalizeAgainst

8.7.3 NormalizedMaxMetricIndicator

class performance.driver.classes.indicator.NormalizedMeanMetricIndicator(config)
Calculates the average of the metrics of all runs, normalized by the given value of parameters.

Note that this needs to be defined in the global `config` section
config:

indicators:
- class: indicator.NormalizedMeanMetricIndicator

The name of this indicator
name: someIndicator

The metric and summarizer to use in <metric>.<summarizer>
format
metric: someMetric.someSummarizer

Normalize each test case measurement to the specified parameter
normalizeto: normalizeAgainst

[Optional] You could also use a python expression. The parameters
and the global definitions are available as global variables
normalizeto: 0.8 * normalizeAgainst

8.8 Summarizers

The summarizer classes contains the functions to calculate a summary value for the given time series.

8.8.1 BuiltInSummarizer

class performance.driver.core.classes.summarizer.BuiltInSummarizer(config)
A proxy class that calls the built-in summarizer functions

88 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

Can be used without configuration, like so:
metrics:
- name: metric

...
summarize: [mean, min,]

Or with configuration like so:
metrics:
- name: metric

...
summarize:
- class @mean

The name of the metric in the plots
name: mean

[Optional] Set to `yes` to include outliers
outliers: no

The following built-in summarizers are available:

• mean : Calculate the mean value of the timeseries

• mean_err : Calculate the mean value, including statistical errors

• min : Find the minimum value

• max : Find the maximum value

• sum : Calculate the sum of all timeseries

• median : Calculate the median of the timeseries

• mode : Calculate the mode of the timeseries

• variance : Calculate the variance of the timeseries

• sdeviation : Calculate the standard deviation of the timeseries

8.9 Event Reference

This is a reference to all events broadcasted in the internal event bus, including their available attributes.

8.9. Event Reference 89

dcos-perf-test-driver Documentation, Release 0.1.0

channel.cmdline.CmdlineExitEvent

channel.cmdline.CmdlineExitNonzeroEvent

channel.cmdline.CmdlineExitZeroEvent

core.events.Event

channel.cmdline.CmdlineStartedEvent

channel.http.HTTPErrorEvent

channel.http.HTTPRequestEndEvent

channel.http.HTTPRequestStartEvent

channel.http.HTTPResponseEndEvent

channel.http.HTTPResponseStartEvent

channel.marathon.MarathonDeploymentRequestFailedEvent

channel.marathon.MarathonDeploymentRequestedEvent

channel.marathon.MarathonDeploymentStartedEvent

core.eventbus.ExitEvent

core.events.FlagUpdateEvent

core.events.InterruptEvent

core.events.LogLineEvent

core.events.MetricUpdateEvent

core.events.ObserverEvent

core.events.ParameterUpdateEvent

core.events.RestartEvent

core.events.RunTaskCompletedEvent

core.events.RunTaskEvent

core.events.StalledEvent

core.events.StartEvent

core.events.TeardownEvent

core.events.TickEvent

events.marathon.MarathonEvent

logstax.observer.LogStaxMessageEvent

observer.httptiming.HTTPTimingResultEvent

policy.multistep.CompleteStepImmediatelyEvent

channel.http.HTTPFirstResponseErrorEvent

channel.http.HTTPLastResponseErrorEvent

channel.http.HTTPResponseErrorEvent

channel.http.HTTPFirstRequestEndEvent

channel.http.HTTPLastRequestEndEvent

channel.http.HTTPFirstRequestStartEvent

channel.http.HTTPLastRequestStartEvent

channel.http.HTTPFirstResponseEndEvent

channel.http.HTTPLastResponseEndEvent

channel.http.HTTPFirstResponseStartEvent

channel.http.HTTPLastResponseStartEvent

core.events.ObserverValueEvent

events.marathon.MarathonDeploymentFailedEvent

events.marathon.MarathonUpdateEvent

events.marathon.MarathonDeploymentStatusEvent

events.marathon.MarathonDeploymentStepFailureEvent

events.marathon.MarathonDeploymentStepSuccessEvent

events.marathon.MarathonDeploymentSuccessEvent

events.marathon.MarathonGroupChangeFailedEvent

events.marathon.MarathonGroupChangeSuccessEvent

events.marathon.MarathonSSEConnectedEvent

events.marathon.MarathonSSEDisconnectedEvent

events.marathon.MarathonSSEEvent

events.marathon.MarathonStartedEvent

events.marathon.MarathonUnavailableEvent

8.9.1 Event Details

class performance.driver.classes.channel.cmdline.CmdlineExitEvent(exitcode,
**kwargs)

This event is published when the process launched through the cmdline channel has completed. The exit code
is tracked.

exitcode = None
The exit code of the application launched by the command-line channel

90 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

class performance.driver.classes.channel.cmdline.CmdlineExitNonzeroEvent(exitcode,
**kwargs)

This event is published when the process exited and the exit code is non-zero

class performance.driver.classes.channel.cmdline.CmdlineExitZeroEvent(exitcode,
**kwargs)

This event is published when the process exited and the exit code is zero

class performance.driver.classes.channel.cmdline.CmdlineStartedEvent(pid, *args,
**kwargs)

This event is published when the process has started. It contains the process ID so the observers can attach to
the process and extract useful data.

class performance.driver.classes.channel.http.HTTPErrorEvent(exception, *args,
**kwargs)

Published when an exception is raised during an HTTP operation (ex. connection error)

exception = None
The exception that was raised

class performance.driver.classes.channel.http.HTTPFirstRequestEndEvent(verb,
url,
body,
head-
ers,
*args,
**kwargs)

Published when the first request out of many is completed. This is valid when a repeat parameter has a value
> 1.

class performance.driver.classes.channel.http.HTTPFirstRequestStartEvent(verb,
url,
body,
head-
ers,
*args,
**kwargs)

Published when the first request out of many is started. This is valid when a repeat parameter has a value > 1.

class performance.driver.classes.channel.http.HTTPFirstResponseEndEvent(url,
body,
head-
ers,
*args,
**kwargs)

Published when the first response out of many has completed. This is valid when a repeat parameter has a
value > 1.

class performance.driver.classes.channel.http.HTTPFirstResponseErrorEvent(url,
body,
head-
ers,
ex-
cep-
tion,
*args,
**kwargs)

Published when the first response out of many has an error. This is valid when a repeat parameter has a value
> 1.

8.9. Event Reference 91

dcos-perf-test-driver Documentation, Release 0.1.0

class performance.driver.classes.channel.http.HTTPFirstResponseStartEvent(url,
*args,
**kwargs)

Published when the first response out of many is starting. This is valid when a repeat parameter has a value
> 1.

class performance.driver.classes.channel.http.HTTPLastRequestEndEvent(verb, url,
body,
headers,
*args,
**kwargs)

Published when the last request out of many is completed. This is valid when a repeat parameter has a value
> 1.

class performance.driver.classes.channel.http.HTTPLastRequestStartEvent(verb,
url,
body,
head-
ers,
*args,
**kwargs)

Published when the last request out of many is started. This is valid when a repeat parameter has a value > 1.

class performance.driver.classes.channel.http.HTTPLastResponseEndEvent(url,
body,
head-
ers,
*args,
**kwargs)

Published when the last response out of many has completed. This is valid when a repeat parameter has a
value > 1.

class performance.driver.classes.channel.http.HTTPLastResponseErrorEvent(url,
body,
head-
ers,
ex-
cep-
tion,
*args,
**kwargs)

Published when the last response out of many has an error. This is valid when a repeat parameter has a value
> 1.

class performance.driver.classes.channel.http.HTTPLastResponseStartEvent(url,
*args,
**kwargs)

Published when the last response out of many is starting. This is valid when a repeat parameter has a value >
1.

class performance.driver.classes.channel.http.HTTPRequestEndEvent(verb, url, body,
headers, *args,
**kwargs)

Published when the HTTP request has completed and the response is starting

body = None
The request body

headers = None

92 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

The request headers

url = None
The URL requested

verb = None
The HTTP verb that was used (in lower-case). Ex: get

class performance.driver.classes.channel.http.HTTPRequestStartEvent(verb, url,
body, head-
ers, *args,
**kwargs)

Published before every HTTP request

body = None
The request body

headers = None
The request headers

url = None
The URL requested

verb = None
The HTTP verb that was used (in lower-case). Ex: get

class performance.driver.classes.channel.http.HTTPResponseEndEvent(url, body,
headers,
*args,
**kwargs)

Published when the HTTP response has completed

body = None
The response body (as string)

headers = None
The response headers

url = None
The URL requested

class performance.driver.classes.channel.http.HTTPResponseErrorEvent(url, body,
headers,
exception,
*args,
**kwargs)

Published when an exception was raised while processing an HTTP response. This is valid when a repeat
parameter has a value = 1.

class performance.driver.classes.channel.http.HTTPResponseStartEvent(url, *args,
**kwargs)

Published when the HTTP response is starting.

url = None
The URL requested

8.9. Event Reference 93

dcos-perf-test-driver Documentation, Release 0.1.0

class performance.driver.classes.channel.marathon.MarathonDeploymentRequestFailedEvent(instance,
sta-
tus_code,
re-
spose,
*args,
**kwargs)

class performance.driver.classes.channel.marathon.MarathonDeploymentRequestedEvent(instance,
*args,
**kwargs)

class performance.driver.classes.channel.marathon.MarathonDeploymentStartedEvent(instance,
*args,
**kwargs)

class performance.driver.classes.observer.events.marathon.MarathonDeploymentFailedEvent(deployment,
af-
fecte-
dIn-
stances,
*args,
**kwargs)

class performance.driver.classes.observer.events.marathon.MarathonDeploymentStatusEvent(deployment,
af-
fecte-
dIn-
stances,
*args,
**kwargs)

class performance.driver.classes.observer.events.marathon.MarathonDeploymentStepFailureEvent(deployment,
af-
fecte-
dIn-
stances,
*args,
**kwargs)

class performance.driver.classes.observer.events.marathon.MarathonDeploymentStepSuccessEvent(deployment,
af-
fecte-
dIn-
stances,
*args,
**kwargs)

class performance.driver.classes.observer.events.marathon.MarathonDeploymentSuccessEvent(deployment,
af-
fecte-
dIn-
stances,
*args,
**kwargs)

class performance.driver.classes.observer.events.marathon.MarathonEvent(traceid=None,
ts=None)

Base class for all marathon-related events

94 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

class performance.driver.classes.observer.events.marathon.MarathonGroupChangeFailedEvent(deployment,
groupid,
rea-
son,
*args,
**kwargs)

class performance.driver.classes.observer.events.marathon.MarathonGroupChangeSuccessEvent(deployment,
groupid,
*args,
**kwargs)

class performance.driver.classes.observer.events.marathon.MarathonSSEConnectedEvent(traceid=None,
ts=None)

Raw SSE endpoint was connected

class performance.driver.classes.observer.events.marathon.MarathonSSEDisconnectedEvent(traceid=None,
ts=None)

Raw SSE endpoint was disconnected

class performance.driver.classes.observer.events.marathon.MarathonSSEEvent(eventName,
event-
Data,
*args,
**kwargs)

Raw SSE event

class performance.driver.classes.observer.events.marathon.MarathonStartedEvent(traceid=None,
ts=None)

Marathon is up and accepting HTTP requests

class performance.driver.classes.observer.events.marathon.MarathonUnavailableEvent(traceid=None,
ts=None)

Marathon is up and accepting HTTP requests

class performance.driver.classes.observer.events.marathon.MarathonUpdateEvent(deployment,
in-
stances,
*args,
**kwargs)

Base class for update events

8.9. Event Reference 95

dcos-perf-test-driver Documentation, Release 0.1.0

class performance.driver.classes.observer.httptiming.HTTPTimingResultEvent(url,
verb,
sta-
tus-
Code,
re-
quest-
Time,
re-
spon-
se-
Time,
to-
tal-
Time,
con-
tentLength,
*args,
**kwargs)

The results of a timing event, initiated by a HTTPTimingObserver

contentLength = None
The length of the response body

requestTime = None
The time the HTTP request took to complete

responseTime = None
The time the HTTP response took to complete

statusCode = None
The HTTP response code

totalTime = None
The overall time from the beginning of the request, till the end of the response

url = None
The URL requested

verb = None
The HTTP verb used to request this resource

class performance.driver.classes.observer.logstax.observer.LogStaxMessageEvent(message,
**kwargs)

class performance.driver.classes.policy.multistep.CompleteStepImmediatelyEvent(traceid=None,
ts=None)

class performance.driver.core.eventbus.ExitEvent(traceid=None, ts=None)
A local event that instructs the main event loop to exit

class performance.driver.core.events.Event(traceid=None, ts=None)
Base event

The traceid parameter is a unique string or object that is carried along related events and is used to group them
together to the same operation.

hasTrace(traceid)
Check if the event was emmited from the given ID

96 Chapter 8. Class Reference

dcos-perf-test-driver Documentation, Release 0.1.0

hasTraces(traceids)
Check if at least one of the given trace ids are in the traceids

toDict()
Return dict representation of the event

class performance.driver.core.events.FlagUpdateEvent(name, value, *args, **kwargs)
A flag has changed for this run

class performance.driver.core.events.InterruptEvent(traceid=None, ts=None)
An interrupt event is dispatched when a critical exception has occurred or when the user has instructed to interupt
the tests via a keystroke

class performance.driver.core.events.LogLineEvent(line, source, kind=None, *args,
**kwargs)

A log line from an observer

class performance.driver.core.events.MetricUpdateEvent(name, value, *args, **kwargs)
A metric has changed

class performance.driver.core.events.ObserverEvent(metric, *args, **kwargs)
A metric change is observed

class performance.driver.core.events.ObserverValueEvent(metric, value, *args,
**kwargs)

A metric has changed to a new value

class performance.driver.core.events.ParameterUpdateEvent(newParameters, oldPa-
rameters, changes, *args,
**kwargs)

A parameter change request

class performance.driver.core.events.RestartEvent(traceid=None, ts=None)
A restart event is dispatched in place of StartEvent when more than one test loops has to be executed.

class performance.driver.core.events.RunTaskCompletedEvent(previousEvent, excep-
tion=None)

This event is displatched when a task is completed. This is useful if you want to keep track of a lengthy event

class performance.driver.core.events.RunTaskEvent(task)
This event is dispatched when a policy requires the session to execute a task

class performance.driver.core.events.StalledEvent(traceid=None, ts=None)
An stalled event is dispatched from the session manager when an FSM has stuck to a non-terminal state for
longer than expected time.

class performance.driver.core.events.StartEvent(traceid=None, ts=None)
A start event is dispatched when the test configuration is loaded and the environment is ready, in order to start
the policies.

class performance.driver.core.events.TeardownEvent(traceid=None, ts=None)
A teardown event is dispatched when all policies are completed and the system is about to be torn down.

class performance.driver.core.events.TickEvent(count, delta, *args, **kwargs)
A clock event is dispatched periodically by the event bus

8.10 Event Filters

class performance.driver.core.eventfilters.EventFilter(expression)
Various trackers in DC/OS Performance Test Driver are operating purely on events. Therefore it’s some times
needed to use a more elaborate selector in order to filter the correct events.

8.10. Event Filters 97

dcos-perf-test-driver Documentation, Release 0.1.0

The following filter expression is currently supported and are closely modeled around the CSS syntax:

EventName[attrib1=value,attrib2=value,...]:selector1:selector2:...

Where:

• _Event Name_ is the name of the event or * if you want to match any event.

• _Attributes_ is a comma-separated list of <attrib> <operator> <value> values. For example:
method==post. The following table summarises the different operators you can use for the attributes.

Operator Description
= or == Equal (case sensitive for strings)
!= Not equal
>, >= Grater than / Grater than or equal
<, <= Less than / Less than or equal
~= Partial regular expression match
~== Exact regular expression match
<~ Value in list or key in dictionary (like in)

• _Selector_ specifies which event out of many similar to chose. Valid selectors are:

Selector Description
:first Match the first event in the tracking session
:last Match the last event in the tracking session
:nth(n)
:nth(n,grp)

Match the n-th event in the tracking session. If a grp parameter is specified, the
counter will be groupped with the given indicator.

:single Match a single event, globally. After the first match all other usages accept by
default.

:after(Xs) Trigger after X seconds after the last event
:notrace Ignore the trace ID matching and accept any event, even if they do not belong in

the trace session.

For example, to match every HTTPRequestEvent:

HTTPRequestEvent

Or, to match every POST HTTPRequestEvent:

HTTPRequestEvent[method=post]

Or, to match the last HTTPResponseEndEvent

HTTPResponseEndEvent:last

Or, to match the HTTPRequestStartEvent that contains the string “foo”:

HTTPResponseEndEvent[body~=foo]

Or match any first event:

*:first

98 Chapter 8. Class Reference

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

99

dcos-perf-test-driver Documentation, Release 0.1.0

100 Chapter 9. Indices and tables

Index

A
AuthEE (class in performance.driver.classes.tasks.auth),

72
AuthOpen (class in perfor-

mance.driver.classes.tasks.auth), 72

B
body (performance.driver.classes.channel.http.HTTPRequestEndEvent

attribute), 92
body (performance.driver.classes.channel.http.HTTPRequestStartEvent

attribute), 93
body (performance.driver.classes.channel.http.HTTPResponseEndEvent

attribute), 93
BuiltInSummarizer (class in perfor-

mance.driver.core.classes.summarizer), 88

C
CmdlineChannel (class in perfor-

mance.driver.classes.channel), 56
CmdlineExitEvent (class in perfor-

mance.driver.classes.channel.cmdline), 90
CmdlineExitNonzeroEvent (class in perfor-

mance.driver.classes.channel.cmdline), 90
CmdlineExitZeroEvent (class in perfor-

mance.driver.classes.channel.cmdline), 91
CmdlineStartedEvent (class in perfor-

mance.driver.classes.channel.cmdline), 91
CompleteStepImmediatelyEvent (class in perfor-

mance.driver.classes.policy.multistep), 96
contentLength (performance.driver.classes.observer.httptiming.HTTPTimingResultEvent

attribute), 96
CountTracker (class in perfor-

mance.driver.classes.tracker), 69
CSVReporter (class in perfor-

mance.driver.classes.reporter), 75

D
DataDogMetricReporter (class in perfor-

mance.driver.classes.reporter), 76

DataDogReporter (class in perfor-
mance.driver.classes.reporter), 75

DumpMetricTracker (class in perfor-
mance.driver.classes.tracker), 70

DurationTracker (class in perfor-
mance.driver.classes.tracker), 68

E
Event (class in performance.driver.core.events), 96
EventAttributeTracker (class in perfor-

mance.driver.classes.tracker), 68
EventFilter (class in performance.driver.core.eventfilters),

97
exception (performance.driver.classes.channel.http.HTTPErrorEvent

attribute), 91
exitcode (performance.driver.classes.channel.cmdline.CmdlineExitEvent

attribute), 90
ExitEvent (class in performance.driver.core.eventbus), 96

F
FlagUpdateEvent (class in perfor-

mance.driver.core.events), 97

H
hasTrace() (performance.driver.core.events.Event

method), 96
hasTraces() (performance.driver.core.events.Event

method), 96
headers (performance.driver.classes.channel.http.HTTPRequestEndEvent

attribute), 92
headers (performance.driver.classes.channel.http.HTTPRequestStartEvent

attribute), 93
headers (performance.driver.classes.channel.http.HTTPResponseEndEvent

attribute), 93
HTTPChannel (class in perfor-

mance.driver.classes.channel), 57
HTTPErrorEvent (class in perfor-

mance.driver.classes.channel.http), 91
HTTPFirstRequestEndEvent (class in perfor-

mance.driver.classes.channel.http), 91

101

dcos-perf-test-driver Documentation, Release 0.1.0

HTTPFirstRequestStartEvent (class in perfor-
mance.driver.classes.channel.http), 91

HTTPFirstResponseEndEvent (class in perfor-
mance.driver.classes.channel.http), 91

HTTPFirstResponseErrorEvent (class in perfor-
mance.driver.classes.channel.http), 91

HTTPFirstResponseStartEvent (class in perfor-
mance.driver.classes.channel.http), 91

HTTPLastRequestEndEvent (class in perfor-
mance.driver.classes.channel.http), 92

HTTPLastRequestStartEvent (class in perfor-
mance.driver.classes.channel.http), 92

HTTPLastResponseEndEvent (class in perfor-
mance.driver.classes.channel.http), 92

HTTPLastResponseErrorEvent (class in perfor-
mance.driver.classes.channel.http), 92

HTTPLastResponseStartEvent (class in perfor-
mance.driver.classes.channel.http), 92

HTTPRequestEndEvent (class in perfor-
mance.driver.classes.channel.http), 92

HTTPRequestStartEvent (class in perfor-
mance.driver.classes.channel.http), 93

HTTPResponseEndEvent (class in perfor-
mance.driver.classes.channel.http), 93

HTTPResponseErrorEvent (class in perfor-
mance.driver.classes.channel.http), 93

HTTPResponseStartEvent (class in perfor-
mance.driver.classes.channel.http), 93

HTTPTimingObserver (class in perfor-
mance.driver.classes.observer), 61

HTTPTimingResultEvent (class in perfor-
mance.driver.classes.observer.httptiming),
95

I
InterruptEvent (class in performance.driver.core.events),

97

J
JMXObserver (class in perfor-

mance.driver.classes.observer), 61

L
LogLineEvent (class in performance.driver.core.events),

97
LogStaxMessageEvent (class in perfor-

mance.driver.classes.observer.logstax.observer),
96

LogStaxObserver (class in perfor-
mance.driver.classes.observer), 62

LogStaxTracker (class in perfor-
mance.driver.classes.tracker), 70

M
MarathonDeployChannel (class in perfor-

mance.driver.classes.channel), 60
MarathonDeploymentFailedEvent (class in perfor-

mance.driver.classes.observer.events.marathon),
94

MarathonDeploymentRequestedEvent (class in perfor-
mance.driver.classes.channel.marathon), 94

MarathonDeploymentRequestFailedEvent (class in per-
formance.driver.classes.channel.marathon), 93

MarathonDeploymentStartedEvent (class in perfor-
mance.driver.classes.channel.marathon), 94

MarathonDeploymentStatusEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
94

MarathonDeploymentStepFailureEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
94

MarathonDeploymentStepSuccessEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
94

MarathonDeploymentSuccessEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
94

MarathonEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
94

MarathonEventsObserver (class in perfor-
mance.driver.classes.observer), 65

MarathonGroupChangeFailedEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
94

MarathonGroupChangeSuccessEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
95

MarathonLogsObserver (class in perfor-
mance.driver.classes.observer), 66

MarathonMetricsObserver (class in perfor-
mance.driver.classes.observer), 66

MarathonPollerObserver (class in perfor-
mance.driver.classes.observer), 67

MarathonSSEConnectedEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
95

MarathonSSEDisconnectedEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
95

MarathonSSEEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
95

MarathonStartedEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
95

MarathonUnavailableEvent (class in perfor-

102 Index

dcos-perf-test-driver Documentation, Release 0.1.0

mance.driver.classes.observer.events.marathon),
95

MarathonUpdateChannel (class in perfor-
mance.driver.classes.channel), 59

MarathonUpdateEvent (class in perfor-
mance.driver.classes.observer.events.marathon),
95

MetricUpdateEvent (class in perfor-
mance.driver.core.events), 97

MultilineCodec (class in perfor-
mance.driver.classes.observer.logstax.codecs),
64

MultiStepPolicy (class in perfor-
mance.driver.classes.policy), 53

MultivariableExplorerPolicy (class in perfor-
mance.driver.classes.policy), 51

N
NormalizedMeanMetricIndicator (class in perfor-

mance.driver.classes.indicator), 87, 88

O
ObserverEvent (class in performance.driver.core.events),

97
ObserverValueEvent (class in perfor-

mance.driver.core.events), 97

P
ParameterUpdateEvent (class in perfor-

mance.driver.core.events), 97
PlotReporter (class in perfor-

mance.driver.classes.reporter), 77
PostgRESTReporter (class in perfor-

mance.driver.classes.reporter), 78

R
RawEventsReporter (class in perfor-

mance.driver.classes.reporter), 85
RawReporter (class in perfor-

mance.driver.classes.reporter), 83
RemoveAllApps (class in perfor-

mance.driver.classes.tasks.marathon), 73
RemoveGroup (class in perfor-

mance.driver.classes.tasks.marathon), 74
RemoveMatchingApps (class in perfor-

mance.driver.classes.tasks.marathon), 74
Request (class in performance.driver.classes.tasks.http),

72
requestTime (performance.driver.classes.observer.httptiming.HTTPTimingResultEvent

attribute), 96
responseTime (performance.driver.classes.observer.httptiming.HTTPTimingResultEvent

attribute), 96
RestartEvent (class in performance.driver.core.events), 97

RunTaskCompletedEvent (class in perfor-
mance.driver.core.events), 97

RunTaskEvent (class in performance.driver.core.events),
97

S
S3Reporter (class in performance.driver.classes.reporter),

86
SimplePolicy (class in performance.driver.classes.policy),

55
SingleLineCodec (class in perfor-

mance.driver.classes.observer.logstax.codecs),
65

StalledEvent (class in performance.driver.core.events), 97
StartEvent (class in performance.driver.core.events), 97
statusCode (performance.driver.classes.observer.httptiming.HTTPTimingResultEvent

attribute), 96

T
TeardownEvent (class in performance.driver.core.events),

97
TickEvent (class in performance.driver.core.events), 97
TimeEvolutionPolicy (class in perfor-

mance.driver.classes.policy), 53
toDict() (performance.driver.core.events.Event method),

97
totalTime (performance.driver.classes.observer.httptiming.HTTPTimingResultEvent

attribute), 96

U
url (performance.driver.classes.channel.http.HTTPRequestEndEvent

attribute), 93
url (performance.driver.classes.channel.http.HTTPRequestStartEvent

attribute), 93
url (performance.driver.classes.channel.http.HTTPResponseEndEvent

attribute), 93
url (performance.driver.classes.channel.http.HTTPResponseStartEvent

attribute), 93
url (performance.driver.classes.observer.httptiming.HTTPTimingResultEvent

attribute), 96

V
verb (performance.driver.classes.channel.http.HTTPRequestEndEvent

attribute), 93
verb (performance.driver.classes.channel.http.HTTPRequestStartEvent

attribute), 93
verb (performance.driver.classes.observer.httptiming.HTTPTimingResultEvent

attribute), 96

Index 103

	Installation
	Concepts
	Summarization
	The Black Box Abstraction

	Architecture
	Instantiating Components
	Event Cascading
	Processing the metrics

	Example
	The testing scenario
	Configuring our black box
	Defining the axis evolution
	Ensuring state integrity
	Reporting the results
	Indicators
	Increasing our statistics
	Parameterizing your configuration
	Running the tests

	Usage
	–define
	–meta
	–results
	–verbose

	Cookbook
	General Section Recipes
	Channel Recipes
	Observer Recipes
	Tracker Recipes
	Policy Recipes
	Tasks Recipes
	Advanced Recipes

	Configuration
	Global Configuration Statements
	Per-Class Configuration Statements
	Separating Configuration Files
	Macros
	Configuration Example

	Class Reference
	Policies
	Channels
	Observers
	Trackers
	Tasks
	Reporters
	Indicators
	Summarizers
	Event Reference
	Event Filters

	Indices and tables

